Cargando…
The Validation of Deep Learning-Based Grading Model for Diabetic Retinopathy
PURPOSE: To evaluate the performance of a deep learning (DL)-based artificial intelligence (AI) hierarchical diagnosis software, EyeWisdom V1 for diabetic retinopathy (DR). MATERIALS AND METHODS: The prospective study was a multicenter, double-blind, and self-controlled clinical trial. Non-dilated p...
Autores principales: | Zhang, Wen-fei, Li, Dong-hong, Wei, Qi-jie, Ding, Da-yong, Meng, Li-hui, Wang, Yue-lin, Zhao, Xin-yu, Chen, You-xin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9148973/ https://www.ncbi.nlm.nih.gov/pubmed/35652075 http://dx.doi.org/10.3389/fmed.2022.839088 |
Ejemplares similares
-
Diabetic Retinopathy Grading by Deep Graph Correlation Network on Retinal Images Without Manual Annotations
por: Zhang, Guanghua, et al.
Publicado: (2022) -
Screening Referable Diabetic Retinopathy Using a Semi-automated Deep Learning Algorithm Assisted Approach
por: Wang, Yueye, et al.
Publicado: (2021) -
Automated Grading of Diabetic Retinopathy with Ultra-Widefield Fluorescein Angiography and Deep Learning
por: Wang, Xiaoling, et al.
Publicado: (2021) -
Retinopathy grading with deep learning and wavelet hyper-analytic activations
por: Chandrasekaran, Raja, et al.
Publicado: (2022) -
Deep Learning Fundus Image Analysis for Diabetic Retinopathy and Macular Edema Grading
por: Sahlsten, Jaakko, et al.
Publicado: (2019)