Cargando…
Multi-Modal Neuroimaging Neural Network-Based Feature Detection for Diagnosis of Alzheimer’s Disease
Alzheimer’s disease (AD) is a neurodegenerative brain disease, and it is challenging to mine features that distinguish AD and healthy control (HC) from multiple datasets. Brain network modeling technology in AD using single-modal images often lacks supplementary information regarding multi-source re...
Autores principales: | Meng, Xianglian, Liu, Junlong, Fan, Xiang, Bian, Chenyuan, Wei, Qingpeng, Wang, Ziwei, Liu, Wenjie, Jiao, Zhuqing |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9149574/ https://www.ncbi.nlm.nih.gov/pubmed/35651528 http://dx.doi.org/10.3389/fnagi.2022.911220 |
Ejemplares similares
-
Feature Fusion and Detection in Alzheimer’s Disease Using a Novel Genetic Multi-Kernel SVM Based on MRI Imaging and Gene Data
por: Meng, Xianglian, et al.
Publicado: (2022) -
Research on Voxel-Based Features Detection and Analysis of Alzheimer’s Disease Using Random Survey Support Vector Machine
por: Meng, Xianglian, et al.
Publicado: (2022) -
Neuroimaging Modalities in Alzheimer’s Disease: Diagnosis and Clinical Features
por: Kim, JunHyun, et al.
Publicado: (2022) -
Multi-Modal Feature Selection with Feature Correlation and Feature Structure Fusion for MCI and AD Classification
por: Jiao, Zhuqing, et al.
Publicado: (2022) -
Neuroimaging modality fusion in Alzheimer’s classification using convolutional neural networks
por: Punjabi, Arjun, et al.
Publicado: (2019)