Cargando…

Evaluating the Quality of Optimal MRCP Image Using RT-2D-Compressed SENSE(CS)Turbo Spin Echo: Comparing Respiratory Triggering(RT)-2D-SENSE Turbo Spin Echo and Breath Hold-2D-Single-Shot Turbo Spin Echo

This study aimed to select the pulse sequence providing the optimal MRCP image quality by applying various reduction and denoising level parameters—which could improve image quality and shorten examination time—to BH-2D-SSh TSE, RT- 2D-SENSE TSE, and RT-2D-Compressed SENSE(CS) TSE and then comparing...

Descripción completa

Detalles Bibliográficos
Autores principales: Goo, Eun-Hoe, Kim, Sung-Soo
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9149970/
https://www.ncbi.nlm.nih.gov/pubmed/35645397
http://dx.doi.org/10.3390/tomography8030111
_version_ 1784717321225371648
author Goo, Eun-Hoe
Kim, Sung-Soo
author_facet Goo, Eun-Hoe
Kim, Sung-Soo
author_sort Goo, Eun-Hoe
collection PubMed
description This study aimed to select the pulse sequence providing the optimal MRCP image quality by applying various reduction and denoising level parameters—which could improve image quality and shorten examination time—to BH-2D-SSh TSE, RT- 2D-SENSE TSE, and RT-2D-Compressed SENSE(CS) TSE and then comparing and analyzing the obtained images. This study was carried out using 30 subjects (15 men and 15 women with a mean age of 53 ± 8.76 years) who underwent an MRCP test using 3.0T MRI equipment. These 30 subjects were composed of 20 patients (CHDD: 7; LC: 6; and IPMN: 7) and 10 volunteers without a disease. When the CS technique was used, five reduction values (1.1, 1.2, 1.3, 1.4, and 1.5) were used and four denoising levels (No, Weak, Medium, and Strong) were used. The existing SENSE method was based on a reduction value of 1, and other parameters were set the same. The image data of BH-2D-SSh TSE, RT-2D-SENSE TSE, and RT-CS-2D TSE used for the analysis were acquired in the coronal plane, and the acquired data underwent MIP post-processing for analysis. To compare these techniques, SNR and CNR were measured for six biliary duct images for the purpose of quantitative analysis, and qualitative analysis was performed on the sharpness of the duct, the overall quality of the image, and the motion artifact. The results of the quantitative and standard analyses showed that the RT-2D-CS TSE technique had the highest results for all IPMN, LC, and CHDD diseases (p < 0.05). Moreover, SNR and CNR were the highest when the reduction value was set to 1.3 and the denoising level was set to medium as the CS setting values (p < 0.05). Compared with the conventional RT-2D-SENSE TSE, the test time decreased by 20% and SNR and CNR increased by 14% on average. When conducting RT-2D-CS TSE, we found that it shortened the examination time and improved the image quality compared to the existing RT-2D-SENSE TSE. Unlike previous studies, this study using the RT technique shows that it is a useful MRI Pulse Sequence technique able to replace the BH-2D-SSh TSE and BH-3D-SENSE GRASE techniques, which require the patient to hold their breath during the test.
format Online
Article
Text
id pubmed-9149970
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-91499702022-05-31 Evaluating the Quality of Optimal MRCP Image Using RT-2D-Compressed SENSE(CS)Turbo Spin Echo: Comparing Respiratory Triggering(RT)-2D-SENSE Turbo Spin Echo and Breath Hold-2D-Single-Shot Turbo Spin Echo Goo, Eun-Hoe Kim, Sung-Soo Tomography Article This study aimed to select the pulse sequence providing the optimal MRCP image quality by applying various reduction and denoising level parameters—which could improve image quality and shorten examination time—to BH-2D-SSh TSE, RT- 2D-SENSE TSE, and RT-2D-Compressed SENSE(CS) TSE and then comparing and analyzing the obtained images. This study was carried out using 30 subjects (15 men and 15 women with a mean age of 53 ± 8.76 years) who underwent an MRCP test using 3.0T MRI equipment. These 30 subjects were composed of 20 patients (CHDD: 7; LC: 6; and IPMN: 7) and 10 volunteers without a disease. When the CS technique was used, five reduction values (1.1, 1.2, 1.3, 1.4, and 1.5) were used and four denoising levels (No, Weak, Medium, and Strong) were used. The existing SENSE method was based on a reduction value of 1, and other parameters were set the same. The image data of BH-2D-SSh TSE, RT-2D-SENSE TSE, and RT-CS-2D TSE used for the analysis were acquired in the coronal plane, and the acquired data underwent MIP post-processing for analysis. To compare these techniques, SNR and CNR were measured for six biliary duct images for the purpose of quantitative analysis, and qualitative analysis was performed on the sharpness of the duct, the overall quality of the image, and the motion artifact. The results of the quantitative and standard analyses showed that the RT-2D-CS TSE technique had the highest results for all IPMN, LC, and CHDD diseases (p < 0.05). Moreover, SNR and CNR were the highest when the reduction value was set to 1.3 and the denoising level was set to medium as the CS setting values (p < 0.05). Compared with the conventional RT-2D-SENSE TSE, the test time decreased by 20% and SNR and CNR increased by 14% on average. When conducting RT-2D-CS TSE, we found that it shortened the examination time and improved the image quality compared to the existing RT-2D-SENSE TSE. Unlike previous studies, this study using the RT technique shows that it is a useful MRI Pulse Sequence technique able to replace the BH-2D-SSh TSE and BH-3D-SENSE GRASE techniques, which require the patient to hold their breath during the test. MDPI 2022-05-22 /pmc/articles/PMC9149970/ /pubmed/35645397 http://dx.doi.org/10.3390/tomography8030111 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Goo, Eun-Hoe
Kim, Sung-Soo
Evaluating the Quality of Optimal MRCP Image Using RT-2D-Compressed SENSE(CS)Turbo Spin Echo: Comparing Respiratory Triggering(RT)-2D-SENSE Turbo Spin Echo and Breath Hold-2D-Single-Shot Turbo Spin Echo
title Evaluating the Quality of Optimal MRCP Image Using RT-2D-Compressed SENSE(CS)Turbo Spin Echo: Comparing Respiratory Triggering(RT)-2D-SENSE Turbo Spin Echo and Breath Hold-2D-Single-Shot Turbo Spin Echo
title_full Evaluating the Quality of Optimal MRCP Image Using RT-2D-Compressed SENSE(CS)Turbo Spin Echo: Comparing Respiratory Triggering(RT)-2D-SENSE Turbo Spin Echo and Breath Hold-2D-Single-Shot Turbo Spin Echo
title_fullStr Evaluating the Quality of Optimal MRCP Image Using RT-2D-Compressed SENSE(CS)Turbo Spin Echo: Comparing Respiratory Triggering(RT)-2D-SENSE Turbo Spin Echo and Breath Hold-2D-Single-Shot Turbo Spin Echo
title_full_unstemmed Evaluating the Quality of Optimal MRCP Image Using RT-2D-Compressed SENSE(CS)Turbo Spin Echo: Comparing Respiratory Triggering(RT)-2D-SENSE Turbo Spin Echo and Breath Hold-2D-Single-Shot Turbo Spin Echo
title_short Evaluating the Quality of Optimal MRCP Image Using RT-2D-Compressed SENSE(CS)Turbo Spin Echo: Comparing Respiratory Triggering(RT)-2D-SENSE Turbo Spin Echo and Breath Hold-2D-Single-Shot Turbo Spin Echo
title_sort evaluating the quality of optimal mrcp image using rt-2d-compressed sense(cs)turbo spin echo: comparing respiratory triggering(rt)-2d-sense turbo spin echo and breath hold-2d-single-shot turbo spin echo
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9149970/
https://www.ncbi.nlm.nih.gov/pubmed/35645397
http://dx.doi.org/10.3390/tomography8030111
work_keys_str_mv AT gooeunhoe evaluatingthequalityofoptimalmrcpimageusingrt2dcompressedsensecsturbospinechocomparingrespiratorytriggeringrt2dsenseturbospinechoandbreathhold2dsingleshotturbospinecho
AT kimsungsoo evaluatingthequalityofoptimalmrcpimageusingrt2dcompressedsensecsturbospinechocomparingrespiratorytriggeringrt2dsenseturbospinechoandbreathhold2dsingleshotturbospinecho