Cargando…
Empirical comparison and analysis of machine learning-based predictors for predicting and analyzing of thermophilic proteins
Thermophilic proteins (TPPs) are critical for basic research and in the food industry due to their ability to maintain a thermodynamically stable fold at extremely high temperatures. Thus, the expeditious identification of novel TPPs through computational models from protein sequences is very desira...
Autores principales: | Charoenkwan, Phasit, Schaduangrat, Nalini, Hasan, Md Mehedi, Moni, Mohammad Ali, Lió, Pietro, Shoombuatong, Watshara |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Leibniz Research Centre for Working Environment and Human Factors
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9150013/ https://www.ncbi.nlm.nih.gov/pubmed/35651661 http://dx.doi.org/10.17179/excli2022-4723 |
Ejemplares similares
-
SCMRSA: a New Approach
for Identifying and Analyzing
Anti-MRSA Peptides Using Estimated Propensity Scores of Dipeptides
por: Charoenkwan, Phasit, et al.
Publicado: (2022) -
Computational prediction and interpretation of druggable proteins using a stacked ensemble-learning framework
por: Charoenkwan, Phasit, et al.
Publicado: (2022) -
StackPR is a new computational approach for large-scale identification of progesterone receptor antagonists using the stacking strategy
por: Schaduangrat, Nalini, et al.
Publicado: (2022) -
iAMAP-SCM: A Novel
Computational Tool for Large-Scale
Identification of Antimalarial Peptides Using Estimated Propensity
Scores of Dipeptides
por: Charoenkwan, Phasit, et al.
Publicado: (2022) -
iBitter-Fuse: A Novel Sequence-Based Bitter Peptide Predictor by Fusing Multi-View Features
por: Charoenkwan, Phasit, et al.
Publicado: (2021)