Cargando…
Electronic Dynamics of a Molecular System Coupled to a Plasmonic Nanoparticle Combining the Polarizable Continuum Model and Many-Body Perturbation Theory
[Image: see text] The efficiency of plasmonic metallic nanoparticles in harvesting and concentrating light energy in their proximity triggers a wealth of important and intriguing phenomena. For example, spectroscopies are able to reach single-molecule and intramolecule sensitivities, and important c...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2022
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9150096/ https://www.ncbi.nlm.nih.gov/pubmed/35655939 http://dx.doi.org/10.1021/acs.jpcc.2c02209 |
Sumario: | [Image: see text] The efficiency of plasmonic metallic nanoparticles in harvesting and concentrating light energy in their proximity triggers a wealth of important and intriguing phenomena. For example, spectroscopies are able to reach single-molecule and intramolecule sensitivities, and important chemical reactions can be effectively photocatalyzed. For the real-time description of the coupled dynamics of a molecule’s electronic system and of a plasmonic nanoparticle, a methodology has been recently proposed (J. Phys. Chem. C. 120, 2016, 28774−28781) which combines the classical description of the nanoparticle as a polarizable continuum medium with a quantum-mechanical description of the molecule treated at the time-dependent configuration interaction (TDCI) level. In this work, we extend this methodology by describing the molecule using many-body perturbation theory: the molecule’s excitation energies, transition dipoles, and potentials computed at the GW/Bethe–Salpeter equation (BSE) level. This allows us to overcome current limitations of TDCI in terms of achievable accuracy without compromising on the accessible molecular sizes. We illustrate the developed scheme by characterizing the coupled nanoparticle/molecule dynamics of two prototype molecules, LiCN and p-nitroaniline. |
---|