Cargando…

Disease Models & Mechanisms helps move heart failure to heart success

Heart failure affects ∼64 million people worldwide, resulting in high morbidity, mortality and societal cost. Current treatment strategies are primarily geared at slowing the progression to an advanced disease state, but do not reverse or cure heart failure. A more comprehensive understanding of the...

Descripción completa

Detalles Bibliográficos
Autores principales: Hooper, Kirsty, Hmeljak, Julija
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Company of Biologists Ltd 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9150112/
https://www.ncbi.nlm.nih.gov/pubmed/35593431
http://dx.doi.org/10.1242/dmm.049634
Descripción
Sumario:Heart failure affects ∼64 million people worldwide, resulting in high morbidity, mortality and societal cost. Current treatment strategies are primarily geared at slowing the progression to an advanced disease state, but do not reverse or cure heart failure. A more comprehensive understanding of the underlying biology and development of preclinical models of this heterogeneous group of disorders will improve diagnosis and treatment. Here, we summarise recent preclinical and translational research in this area published in Disease Models & Mechanisms. We also discuss how our Journal is propelling this field forward by launching a Special Issue and ongoing subject collection, ‘Moving Heart Failure to Heart Success: Mechanisms, Regeneration & Therapy’.