Cargando…
Identifying tumor cells at the single-cell level using machine learning
Tumors are complex tissues of cancerous cells surrounded by a heterogeneous cellular microenvironment with which they interact. Single-cell sequencing enables molecular characterization of single cells within the tumor. However, cell annotation—the assignment of cell type or cell state to each seque...
Autores principales: | Dohmen, Jan, Baranovskii, Artem, Ronen, Jonathan, Uyar, Bora, Franke, Vedran, Akalin, Altuna |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9150321/ https://www.ncbi.nlm.nih.gov/pubmed/35637521 http://dx.doi.org/10.1186/s13059-022-02683-1 |
Ejemplares similares
-
Multi-Omics Alleviates the Limitations of Panel Sequencing for Cancer Drug Response Prediction
por: Baranovskii, Artem, et al.
Publicado: (2022) -
Evaluation of colorectal cancer subtypes and cell lines using deep learning
por: Ronen, Jonathan, et al.
Publicado: (2019) -
netSmooth: Network-smoothing based imputation for single cell RNA-seq
por: Ronen, Jonathan, et al.
Publicado: (2018) -
PiGx: reproducible genomics analysis pipelines with GNU Guix
por: Wurmus, Ricardo, et al.
Publicado: (2018) -
RCAS: an RNA centric annotation system for transcriptome-wide regions of interest
por: Uyar, Bora, et al.
Publicado: (2017)