Cargando…
BERT’s sentiment score for portfolio optimization: a fine-tuned view in Black and Litterman model
In financial markets, sentiment analysis on natural language sentences can improve forecasting. Many investors rely on information extracted from newspapers or their feelings. Therefore, this information is expressed in their language. Sentiment analysis models classify sentences (or entire texts) w...
Autores principales: | Colasanto, Francesco, Grilli, Luca, Santoro, Domenico, Villani, Giovanni |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer London
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9150638/ https://www.ncbi.nlm.nih.gov/pubmed/35669537 http://dx.doi.org/10.1007/s00521-022-07403-1 |
Ejemplares similares
-
Black-Litterman model with copula-based views in mean-CVaR portfolio optimization framework with weight constraints
por: Teplova, Tamara, et al.
Publicado: (2022) -
Transfer Learning for Sentiment Analysis Using BERT Based Supervised Fine-Tuning
por: Prottasha, Nusrat Jahan, et al.
Publicado: (2022) -
A BERT Framework to Sentiment Analysis of Tweets
por: Bello, Abayomi, et al.
Publicado: (2023) -
Fine-tuning of BERT Model to Accurately Predict Drug–Target Interactions
por: Kang, Hyeunseok, et al.
Publicado: (2022) -
A Fine-Tuned BERT-Based Transfer Learning Approach for Text Classification
por: Qasim, Rukhma, et al.
Publicado: (2022)