Cargando…

Model Segmentation in Single Particle Tracking

In this paper, we implement and compare two different change detection techniques applied to determining the time points in Single Particle Tracking (SPT) data where the particle changes the dynamic model of motion. The goal is to use this change detection to segment the data in order to estimate th...

Descripción completa

Detalles Bibliográficos
Autores principales: Godoy, Boris I., Vickers, Nicholas A., Andersson, Sean B.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9150762/
https://www.ncbi.nlm.nih.gov/pubmed/35642218
http://dx.doi.org/10.1016/j.ifacol.2021.11.197
_version_ 1784717433753305088
author Godoy, Boris I.
Vickers, Nicholas A.
Andersson, Sean B.
author_facet Godoy, Boris I.
Vickers, Nicholas A.
Andersson, Sean B.
author_sort Godoy, Boris I.
collection PubMed
description In this paper, we implement and compare two different change detection techniques applied to determining the time points in Single Particle Tracking (SPT) data where the particle changes the dynamic model of motion. The goal is to use this change detection to segment the data in order to estimate the relevant parameters of such models. We consider two well-known statistics commonly used for change detection: the likelihood ratio test (LRT) and the Kullback-Leibler divergence (KLD). We assume that our time-varying system is subject to step-like changes in the parameters that drive the process. The techniques are then applied to experimental data acquired on a microscope under controlled settings to validate our results.
format Online
Article
Text
id pubmed-9150762
institution National Center for Biotechnology Information
language English
publishDate 2021
record_format MEDLINE/PubMed
spelling pubmed-91507622022-12-15 Model Segmentation in Single Particle Tracking Godoy, Boris I. Vickers, Nicholas A. Andersson, Sean B. Proc IFAC World Congress Article In this paper, we implement and compare two different change detection techniques applied to determining the time points in Single Particle Tracking (SPT) data where the particle changes the dynamic model of motion. The goal is to use this change detection to segment the data in order to estimate the relevant parameters of such models. We consider two well-known statistics commonly used for change detection: the likelihood ratio test (LRT) and the Kullback-Leibler divergence (KLD). We assume that our time-varying system is subject to step-like changes in the parameters that drive the process. The techniques are then applied to experimental data acquired on a microscope under controlled settings to validate our results. 2021 2021-12-15 /pmc/articles/PMC9150762/ /pubmed/35642218 http://dx.doi.org/10.1016/j.ifacol.2021.11.197 Text en https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0/)
spellingShingle Article
Godoy, Boris I.
Vickers, Nicholas A.
Andersson, Sean B.
Model Segmentation in Single Particle Tracking
title Model Segmentation in Single Particle Tracking
title_full Model Segmentation in Single Particle Tracking
title_fullStr Model Segmentation in Single Particle Tracking
title_full_unstemmed Model Segmentation in Single Particle Tracking
title_short Model Segmentation in Single Particle Tracking
title_sort model segmentation in single particle tracking
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9150762/
https://www.ncbi.nlm.nih.gov/pubmed/35642218
http://dx.doi.org/10.1016/j.ifacol.2021.11.197
work_keys_str_mv AT godoyborisi modelsegmentationinsingleparticletracking
AT vickersnicholasa modelsegmentationinsingleparticletracking
AT anderssonseanb modelsegmentationinsingleparticletracking