Cargando…

Misclassification of current status data

We describe a simple method for nonparametric estimation of a distribution function based on current status data where observations of current status information are subject to misclassification. Nonparametric maximum likelihood techniques lead to use of a straightforward set of adjustments to the f...

Descripción completa

Detalles Bibliográficos
Autores principales: McKeown, Karen, Jewell, Nicholas P.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2010
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9150792/
https://www.ncbi.nlm.nih.gov/pubmed/20157848
http://dx.doi.org/10.1007/s10985-010-9154-0
Descripción
Sumario:We describe a simple method for nonparametric estimation of a distribution function based on current status data where observations of current status information are subject to misclassification. Nonparametric maximum likelihood techniques lead to use of a straightforward set of adjustments to the familiar pool-adjacent-violators estimator used when misclassification is assumed absent. The methods consider alternative misclassification models and are extended to regression models for the underlying survival time. The ideas are motivated by and applied to an example on human papilloma virus (HPV) infection status of a sample of women examined in San Francisco.