Cargando…

Misclassification of current status data

We describe a simple method for nonparametric estimation of a distribution function based on current status data where observations of current status information are subject to misclassification. Nonparametric maximum likelihood techniques lead to use of a straightforward set of adjustments to the f...

Descripción completa

Detalles Bibliográficos
Autores principales: McKeown, Karen, Jewell, Nicholas P.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2010
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9150792/
https://www.ncbi.nlm.nih.gov/pubmed/20157848
http://dx.doi.org/10.1007/s10985-010-9154-0
_version_ 1784717439323340800
author McKeown, Karen
Jewell, Nicholas P.
author_facet McKeown, Karen
Jewell, Nicholas P.
author_sort McKeown, Karen
collection PubMed
description We describe a simple method for nonparametric estimation of a distribution function based on current status data where observations of current status information are subject to misclassification. Nonparametric maximum likelihood techniques lead to use of a straightforward set of adjustments to the familiar pool-adjacent-violators estimator used when misclassification is assumed absent. The methods consider alternative misclassification models and are extended to regression models for the underlying survival time. The ideas are motivated by and applied to an example on human papilloma virus (HPV) infection status of a sample of women examined in San Francisco.
format Online
Article
Text
id pubmed-9150792
institution National Center for Biotechnology Information
language English
publishDate 2010
record_format MEDLINE/PubMed
spelling pubmed-91507922022-05-30 Misclassification of current status data McKeown, Karen Jewell, Nicholas P. Lifetime Data Anal Article We describe a simple method for nonparametric estimation of a distribution function based on current status data where observations of current status information are subject to misclassification. Nonparametric maximum likelihood techniques lead to use of a straightforward set of adjustments to the familiar pool-adjacent-violators estimator used when misclassification is assumed absent. The methods consider alternative misclassification models and are extended to regression models for the underlying survival time. The ideas are motivated by and applied to an example on human papilloma virus (HPV) infection status of a sample of women examined in San Francisco. 2010-04 2010-02-16 /pmc/articles/PMC9150792/ /pubmed/20157848 http://dx.doi.org/10.1007/s10985-010-9154-0 Text en https://creativecommons.org/licenses/by/4.0/Open Access This article is distributed under the terms of the Creative Commons Attribution Noncommercial License which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.
spellingShingle Article
McKeown, Karen
Jewell, Nicholas P.
Misclassification of current status data
title Misclassification of current status data
title_full Misclassification of current status data
title_fullStr Misclassification of current status data
title_full_unstemmed Misclassification of current status data
title_short Misclassification of current status data
title_sort misclassification of current status data
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9150792/
https://www.ncbi.nlm.nih.gov/pubmed/20157848
http://dx.doi.org/10.1007/s10985-010-9154-0
work_keys_str_mv AT mckeownkaren misclassificationofcurrentstatusdata
AT jewellnicholasp misclassificationofcurrentstatusdata