Cargando…

Abnormal Retinal Vessel Architecture in Albinism and Idiopathic Infantile Nystagmus

PURPOSE: Infantile nystagmus syndrome (INS) causes altered visual development and can be associated with abnormal retinal structure, to which vascular development of the retina is closely related. Abnormal retinal vasculature has previously been noted in albinism but not idiopathic infantile nystagm...

Descripción completa

Detalles Bibliográficos
Autores principales: Toufeeq, Shafak, Gottlob, Irene, Tu, Zhanhan, Proudlock, Frank A., Pilat, Anastasia
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Association for Research in Vision and Ophthalmology 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9150830/
https://www.ncbi.nlm.nih.gov/pubmed/35616929
http://dx.doi.org/10.1167/iovs.63.5.33
Descripción
Sumario:PURPOSE: Infantile nystagmus syndrome (INS) causes altered visual development and can be associated with abnormal retinal structure, to which vascular development of the retina is closely related. Abnormal retinal vasculature has previously been noted in albinism but not idiopathic infantile nystagmus. We compared the number and diameter of retinal vessels in participants with albinism (PWA) and idiopathic infantile nystagmus (PWIIN) with controls. METHODS: Fundus photography data from 24 PWA, 10 PWIIN, and 34 controls was analyzed using Automated Retinal Image Analyzer (ARIA) software on a field of analysis centered on the optic disc, the annulus of which extended between 4.2 mm and 8.4 mm in diameter. RESULTS: Compared with controls, the mean number of arterial branches was reduced by 24% in PWA (15.5 vs. 20.3, P < 0.001), and venous branches were reduced in both PWA (29%; 12.9 vs. 18.2, P < 0.001) and PWIIN (17%; 15.1 vs. 18.2, P = 0.024). PWA demonstrated 7% thinner “primary” (before branching) arteries (mean diameter: 75.39 µm vs. 80.88 µm, P = 0.043), and 13% thicker (after branching) “secondary” veins (66.72 µm vs. 59.01 µm in controls, P = 0.009). CONCLUSIONS: PWA and PWIIN demonstrated reduced retinal vessel counts and arterial diameters compared with controls. These changes in the superficial retinal vascular network may be secondary to underdevelopment of the neuronal network, which guides vascular development and is also known to be disrupted in INS.