Cargando…
Complementary omics strategies to dissect p53 signaling networks under nutrient stress
Signaling trough p53is a major cellular stress response mechanism and increases upon nutrient stresses such as starvation. Here, we show in a human hepatoma cell line that starvation leads to robust nuclear p53 stabilization. Using BioID, we determine the cytoplasmic p53 interaction network within t...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9151573/ https://www.ncbi.nlm.nih.gov/pubmed/35635656 http://dx.doi.org/10.1007/s00018-022-04345-8 |
_version_ | 1784717512574763008 |
---|---|
author | Galhuber, Markus Michenthaler, Helene Heininger, Christoph Reinisch, Isabel Nössing, Christoph Krstic, Jelena Kupper, Nadja Moyschewitz, Elisabeth Auer, Martina Heitzer, Ellen Ulz, Peter Birner-Gruenberger, Ruth Liesinger, Laura Lenihan-Geels, Georgia Ngawai Oster, Moritz Spreitzer, Emil Zenezini Chiozzi, Riccardo Schulz, Tim J. Schupp, Michael Madl, Tobias Heck, Albert J. R. Prokesch, Andreas |
author_facet | Galhuber, Markus Michenthaler, Helene Heininger, Christoph Reinisch, Isabel Nössing, Christoph Krstic, Jelena Kupper, Nadja Moyschewitz, Elisabeth Auer, Martina Heitzer, Ellen Ulz, Peter Birner-Gruenberger, Ruth Liesinger, Laura Lenihan-Geels, Georgia Ngawai Oster, Moritz Spreitzer, Emil Zenezini Chiozzi, Riccardo Schulz, Tim J. Schupp, Michael Madl, Tobias Heck, Albert J. R. Prokesch, Andreas |
author_sort | Galhuber, Markus |
collection | PubMed |
description | Signaling trough p53is a major cellular stress response mechanism and increases upon nutrient stresses such as starvation. Here, we show in a human hepatoma cell line that starvation leads to robust nuclear p53 stabilization. Using BioID, we determine the cytoplasmic p53 interaction network within the immediate-early starvation response and show that p53 is dissociated from several metabolic enzymes and the kinase PAK2 for which direct binding with the p53 DNA-binding domain was confirmed with NMR studies. Furthermore, proteomics after p53 immunoprecipitation (RIME) uncovered the nuclear interactome under prolonged starvation, where we confirmed the novel p53 interactors SORBS1 (insulin receptor signaling) and UGP2 (glycogen synthesis). Finally, transcriptomics after p53 re-expression revealed a distinct starvation-specific transcriptome response and suggested previously unknown nutrient-dependent p53 target genes. Together, our complementary approaches delineate several nodes of the p53 signaling cascade upon starvation, shedding new light on the mechanisms of p53 as nutrient stress sensor. Given the central role of p53 in cancer biology and the beneficial effects of fasting in cancer treatment, the identified interaction partners and networks could pinpoint novel pharmacologic targets to fine-tune p53 activity. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s00018-022-04345-8. |
format | Online Article Text |
id | pubmed-9151573 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Springer International Publishing |
record_format | MEDLINE/PubMed |
spelling | pubmed-91515732022-06-01 Complementary omics strategies to dissect p53 signaling networks under nutrient stress Galhuber, Markus Michenthaler, Helene Heininger, Christoph Reinisch, Isabel Nössing, Christoph Krstic, Jelena Kupper, Nadja Moyschewitz, Elisabeth Auer, Martina Heitzer, Ellen Ulz, Peter Birner-Gruenberger, Ruth Liesinger, Laura Lenihan-Geels, Georgia Ngawai Oster, Moritz Spreitzer, Emil Zenezini Chiozzi, Riccardo Schulz, Tim J. Schupp, Michael Madl, Tobias Heck, Albert J. R. Prokesch, Andreas Cell Mol Life Sci Original Article Signaling trough p53is a major cellular stress response mechanism and increases upon nutrient stresses such as starvation. Here, we show in a human hepatoma cell line that starvation leads to robust nuclear p53 stabilization. Using BioID, we determine the cytoplasmic p53 interaction network within the immediate-early starvation response and show that p53 is dissociated from several metabolic enzymes and the kinase PAK2 for which direct binding with the p53 DNA-binding domain was confirmed with NMR studies. Furthermore, proteomics after p53 immunoprecipitation (RIME) uncovered the nuclear interactome under prolonged starvation, where we confirmed the novel p53 interactors SORBS1 (insulin receptor signaling) and UGP2 (glycogen synthesis). Finally, transcriptomics after p53 re-expression revealed a distinct starvation-specific transcriptome response and suggested previously unknown nutrient-dependent p53 target genes. Together, our complementary approaches delineate several nodes of the p53 signaling cascade upon starvation, shedding new light on the mechanisms of p53 as nutrient stress sensor. Given the central role of p53 in cancer biology and the beneficial effects of fasting in cancer treatment, the identified interaction partners and networks could pinpoint novel pharmacologic targets to fine-tune p53 activity. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s00018-022-04345-8. Springer International Publishing 2022-05-30 2022 /pmc/articles/PMC9151573/ /pubmed/35635656 http://dx.doi.org/10.1007/s00018-022-04345-8 Text en © The Author(s) 2022, corrected publication 2022 https://creativecommons.org/licenses/by/4.0/Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . |
spellingShingle | Original Article Galhuber, Markus Michenthaler, Helene Heininger, Christoph Reinisch, Isabel Nössing, Christoph Krstic, Jelena Kupper, Nadja Moyschewitz, Elisabeth Auer, Martina Heitzer, Ellen Ulz, Peter Birner-Gruenberger, Ruth Liesinger, Laura Lenihan-Geels, Georgia Ngawai Oster, Moritz Spreitzer, Emil Zenezini Chiozzi, Riccardo Schulz, Tim J. Schupp, Michael Madl, Tobias Heck, Albert J. R. Prokesch, Andreas Complementary omics strategies to dissect p53 signaling networks under nutrient stress |
title | Complementary omics strategies to dissect p53 signaling networks under nutrient stress |
title_full | Complementary omics strategies to dissect p53 signaling networks under nutrient stress |
title_fullStr | Complementary omics strategies to dissect p53 signaling networks under nutrient stress |
title_full_unstemmed | Complementary omics strategies to dissect p53 signaling networks under nutrient stress |
title_short | Complementary omics strategies to dissect p53 signaling networks under nutrient stress |
title_sort | complementary omics strategies to dissect p53 signaling networks under nutrient stress |
topic | Original Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9151573/ https://www.ncbi.nlm.nih.gov/pubmed/35635656 http://dx.doi.org/10.1007/s00018-022-04345-8 |
work_keys_str_mv | AT galhubermarkus complementaryomicsstrategiestodissectp53signalingnetworksundernutrientstress AT michenthalerhelene complementaryomicsstrategiestodissectp53signalingnetworksundernutrientstress AT heiningerchristoph complementaryomicsstrategiestodissectp53signalingnetworksundernutrientstress AT reinischisabel complementaryomicsstrategiestodissectp53signalingnetworksundernutrientstress AT nossingchristoph complementaryomicsstrategiestodissectp53signalingnetworksundernutrientstress AT krsticjelena complementaryomicsstrategiestodissectp53signalingnetworksundernutrientstress AT kuppernadja complementaryomicsstrategiestodissectp53signalingnetworksundernutrientstress AT moyschewitzelisabeth complementaryomicsstrategiestodissectp53signalingnetworksundernutrientstress AT auermartina complementaryomicsstrategiestodissectp53signalingnetworksundernutrientstress AT heitzerellen complementaryomicsstrategiestodissectp53signalingnetworksundernutrientstress AT ulzpeter complementaryomicsstrategiestodissectp53signalingnetworksundernutrientstress AT birnergruenbergerruth complementaryomicsstrategiestodissectp53signalingnetworksundernutrientstress AT liesingerlaura complementaryomicsstrategiestodissectp53signalingnetworksundernutrientstress AT lenihangeelsgeorgiangawai complementaryomicsstrategiestodissectp53signalingnetworksundernutrientstress AT ostermoritz complementaryomicsstrategiestodissectp53signalingnetworksundernutrientstress AT spreitzeremil complementaryomicsstrategiestodissectp53signalingnetworksundernutrientstress AT zenezinichiozziriccardo complementaryomicsstrategiestodissectp53signalingnetworksundernutrientstress AT schulztimj complementaryomicsstrategiestodissectp53signalingnetworksundernutrientstress AT schuppmichael complementaryomicsstrategiestodissectp53signalingnetworksundernutrientstress AT madltobias complementaryomicsstrategiestodissectp53signalingnetworksundernutrientstress AT heckalbertjr complementaryomicsstrategiestodissectp53signalingnetworksundernutrientstress AT prokeschandreas complementaryomicsstrategiestodissectp53signalingnetworksundernutrientstress |