Cargando…
Incorporation of machine learning and deep neural network approaches into a remote sensing-integrated crop model for the simulation of rice growth
Machine learning (ML) and deep neural network (DNN) techniques are promising tools. These can advance mathematical crop modelling methodologies that can integrate these schemes into a process-based crop model capable of reproducing or simulating crop growth. In this study, an innovative hybrid appro...
Autores principales: | Jeong, Seungtaek, Ko, Jonghan, Shin, Taehwan, Yeom, Jong-min |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9151665/ https://www.ncbi.nlm.nih.gov/pubmed/35637314 http://dx.doi.org/10.1038/s41598-022-13232-y |
Ejemplares similares
-
Simulation of Wheat Productivity Using a Model Integrated With Proximal and Remotely Controlled Aerial Sensing Information
por: Shin, Taehwan, et al.
Publicado: (2021) -
Monitoring paddy productivity in North Korea employing geostationary satellite images integrated with GRAMI-rice model
por: Yeom, Jong-min, et al.
Publicado: (2018) -
Remote Sensing
for Crops Spots Pests and
Pathogens
por: Wilke, Carolyn
Publicado: (2023) -
Crop loss identification at field parcel scale using satellite remote sensing and machine learning
por: Hiremath, Santosh, et al.
Publicado: (2021) -
The use of remote sensing to derive maize sowing dates for large-scale crop yield simulations
por: Rezaei, Ehsan Eyshi, et al.
Publicado: (2020)