Cargando…
Optimization of physical quantities in the autoencoder latent space
We propose a strategy for optimizing physical quantities based on exploring in the latent space of a variational autoencoder (VAE). We train a VAE model using various spin configurations formed on a two-dimensional chiral magnetic system. Three optimization algorithms are used to explore the latent...
Autores principales: | Park, S. M., Yoon, H. G., Lee, D. B., Choi, J. W., Kwon, H. Y., Won, C. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9151681/ https://www.ncbi.nlm.nih.gov/pubmed/35637207 http://dx.doi.org/10.1038/s41598-022-13007-5 |
Ejemplares similares
-
Hybrid autoencoder with orthogonal latent space for robust population structure inference
por: Yuan, Meng, et al.
Publicado: (2023) -
Extracting a biologically latent space of lung cancer epigenetics with variational autoencoders
por: Wang, Zhenxing, et al.
Publicado: (2019) -
Improving Chemical Autoencoder Latent Space and Molecular De Novo Generation Diversity with Heteroencoders
por: Bjerrum, Esben Jannik, et al.
Publicado: (2018) -
Development of a β-Variational Autoencoder for Disentangled Latent Space Representation of Anterior Segment Optical Coherence Tomography Images
por: Shon, Kilhwan, et al.
Publicado: (2022) -
Variational autoencoder-based chemical latent space for large molecular structures with 3D complexity
por: Ochiai, Toshiki, et al.
Publicado: (2023)