Cargando…
Deficiency in the zinc transporter ZIP8 impairs epithelia renewal and enhances lung fibrosis
Although aging and lung injury are linked to the development of idiopathic pulmonary fibrosis (IPF), the underlying pathognomonic processes predisposing to fibrotic lesions remain largely unknown. A deficiency in the ability of type 2 alveolar epithelial cell (AEC2) progenitors to regenerate and rep...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Society for Clinical Investigation
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9151685/ https://www.ncbi.nlm.nih.gov/pubmed/35642632 http://dx.doi.org/10.1172/JCI160595 |
_version_ | 1784717523527139328 |
---|---|
author | Foster, Paul S. Tay, Hock L. Oliver, Brian G. |
author_facet | Foster, Paul S. Tay, Hock L. Oliver, Brian G. |
author_sort | Foster, Paul S. |
collection | PubMed |
description | Although aging and lung injury are linked to the development of idiopathic pulmonary fibrosis (IPF), the underlying pathognomonic processes predisposing to fibrotic lesions remain largely unknown. A deficiency in the ability of type 2 alveolar epithelial cell (AEC2) progenitors to regenerate and repair the epithelia has been proposed as a critical factor. In this issue of the JCI, Liang et al. identify a deficiency in the zinc transporter SLC39A8 (ZIP8) in AEC2s and in the subsequent activation of the sirtuin SIRT1 that predisposes to decreased AEC2 renewal capacity and enhanced lung fibrosis in both IPF and aging lungs. Interestingly, the authors demonstrate the efficacy of modulating dietary zinc levels, suggesting the need for clinical trials to evaluate the therapeutic potential of dietary supplementation and the development of pharmacological modulation of the Zn/ZIP8/SIRT1 axis for treatment. |
format | Online Article Text |
id | pubmed-9151685 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | American Society for Clinical Investigation |
record_format | MEDLINE/PubMed |
spelling | pubmed-91516852022-06-02 Deficiency in the zinc transporter ZIP8 impairs epithelia renewal and enhances lung fibrosis Foster, Paul S. Tay, Hock L. Oliver, Brian G. J Clin Invest Commentary Although aging and lung injury are linked to the development of idiopathic pulmonary fibrosis (IPF), the underlying pathognomonic processes predisposing to fibrotic lesions remain largely unknown. A deficiency in the ability of type 2 alveolar epithelial cell (AEC2) progenitors to regenerate and repair the epithelia has been proposed as a critical factor. In this issue of the JCI, Liang et al. identify a deficiency in the zinc transporter SLC39A8 (ZIP8) in AEC2s and in the subsequent activation of the sirtuin SIRT1 that predisposes to decreased AEC2 renewal capacity and enhanced lung fibrosis in both IPF and aging lungs. Interestingly, the authors demonstrate the efficacy of modulating dietary zinc levels, suggesting the need for clinical trials to evaluate the therapeutic potential of dietary supplementation and the development of pharmacological modulation of the Zn/ZIP8/SIRT1 axis for treatment. American Society for Clinical Investigation 2022-06-01 2022-06-01 /pmc/articles/PMC9151685/ /pubmed/35642632 http://dx.doi.org/10.1172/JCI160595 Text en © 2022 Foster et al. https://creativecommons.org/licenses/by/4.0/This work is licensed under the Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . |
spellingShingle | Commentary Foster, Paul S. Tay, Hock L. Oliver, Brian G. Deficiency in the zinc transporter ZIP8 impairs epithelia renewal and enhances lung fibrosis |
title | Deficiency in the zinc transporter ZIP8 impairs epithelia renewal and enhances lung fibrosis |
title_full | Deficiency in the zinc transporter ZIP8 impairs epithelia renewal and enhances lung fibrosis |
title_fullStr | Deficiency in the zinc transporter ZIP8 impairs epithelia renewal and enhances lung fibrosis |
title_full_unstemmed | Deficiency in the zinc transporter ZIP8 impairs epithelia renewal and enhances lung fibrosis |
title_short | Deficiency in the zinc transporter ZIP8 impairs epithelia renewal and enhances lung fibrosis |
title_sort | deficiency in the zinc transporter zip8 impairs epithelia renewal and enhances lung fibrosis |
topic | Commentary |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9151685/ https://www.ncbi.nlm.nih.gov/pubmed/35642632 http://dx.doi.org/10.1172/JCI160595 |
work_keys_str_mv | AT fosterpauls deficiencyinthezinctransporterzip8impairsepitheliarenewalandenhanceslungfibrosis AT tayhockl deficiencyinthezinctransporterzip8impairsepitheliarenewalandenhanceslungfibrosis AT oliverbriang deficiencyinthezinctransporterzip8impairsepitheliarenewalandenhanceslungfibrosis |