Cargando…

α Cell dysfunction in islets from nondiabetic, glutamic acid decarboxylase autoantibody–positive individuals

BACKGROUND: Multiple islet autoantibodies (AAbs) predict the development of type 1 diabetes (T1D) and hyperglycemia within 10 years. By contrast, T1D develops in only approximately 15% of individuals who are positive for single AAbs (generally against glutamic acid decarboxylase [GADA]); hence, the...

Descripción completa

Detalles Bibliográficos
Autores principales: Doliba, Nicolai M., Rozo, Andrea V., Roman, Jeffrey, Qin, Wei, Traum, Daniel, Gao, Long, Liu, Jinping, Manduchi, Elisabetta, Liu, Chengyang, Golson, Maria L., Vahedi, Golnaz, Naji, Ali, Matschinsky, Franz M., Atkinson, Mark A., Powers, Alvin C., Brissova, Marcela, Kaestner, Klaus H., Stoffers, Doris A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Society for Clinical Investigation 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9151702/
https://www.ncbi.nlm.nih.gov/pubmed/35642629
http://dx.doi.org/10.1172/JCI156243
_version_ 1784717527636508672
author Doliba, Nicolai M.
Rozo, Andrea V.
Roman, Jeffrey
Qin, Wei
Traum, Daniel
Gao, Long
Liu, Jinping
Manduchi, Elisabetta
Liu, Chengyang
Golson, Maria L.
Vahedi, Golnaz
Naji, Ali
Matschinsky, Franz M.
Atkinson, Mark A.
Powers, Alvin C.
Brissova, Marcela
Kaestner, Klaus H.
Stoffers, Doris A.
author_facet Doliba, Nicolai M.
Rozo, Andrea V.
Roman, Jeffrey
Qin, Wei
Traum, Daniel
Gao, Long
Liu, Jinping
Manduchi, Elisabetta
Liu, Chengyang
Golson, Maria L.
Vahedi, Golnaz
Naji, Ali
Matschinsky, Franz M.
Atkinson, Mark A.
Powers, Alvin C.
Brissova, Marcela
Kaestner, Klaus H.
Stoffers, Doris A.
author_sort Doliba, Nicolai M.
collection PubMed
description BACKGROUND: Multiple islet autoantibodies (AAbs) predict the development of type 1 diabetes (T1D) and hyperglycemia within 10 years. By contrast, T1D develops in only approximately 15% of individuals who are positive for single AAbs (generally against glutamic acid decarboxylase [GADA]); hence, the single GADA(+) state may represent an early stage of T1D. METHODS: Here, we functionally, histologically, and molecularly phenotyped human islets from nondiabetic GADA(+) and T1D donors. RESULTS: Similar to the few remaining β cells in the T1D islets, GADA(+) donor islets demonstrated a preserved insulin secretory response. By contrast, α cell glucagon secretion was dysregulated in both GADA(+) and T1D islets, with impaired glucose suppression of glucagon secretion. Single-cell RNA-Seq of GADA(+) α cells revealed distinct abnormalities in glycolysis and oxidative phosphorylation pathways and a marked downregulation of cAMP-dependent protein kinase inhibitor β (PKIB), providing a molecular basis for the loss of glucose suppression and the increased effect of 3-isobutyl-1-methylxanthine (IBMX) observed in GADA(+) donor islets. CONCLUSION: We found that α cell dysfunction was present during the early stages of islet autoimmunity at a time when β cell mass was still normal, raising important questions about the role of early α cell dysfunction in the progression of T1D. FUNDING: This work was supported by grants from the NIH (3UC4DK112217-01S1, U01DK123594-02, UC4DK112217, UC4DK112232, U01DK123716, and P30 DK019525) and the Vanderbilt Diabetes Research and Training Center (DK20593).
format Online
Article
Text
id pubmed-9151702
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher American Society for Clinical Investigation
record_format MEDLINE/PubMed
spelling pubmed-91517022022-06-02 α Cell dysfunction in islets from nondiabetic, glutamic acid decarboxylase autoantibody–positive individuals Doliba, Nicolai M. Rozo, Andrea V. Roman, Jeffrey Qin, Wei Traum, Daniel Gao, Long Liu, Jinping Manduchi, Elisabetta Liu, Chengyang Golson, Maria L. Vahedi, Golnaz Naji, Ali Matschinsky, Franz M. Atkinson, Mark A. Powers, Alvin C. Brissova, Marcela Kaestner, Klaus H. Stoffers, Doris A. J Clin Invest Clinical Medicine BACKGROUND: Multiple islet autoantibodies (AAbs) predict the development of type 1 diabetes (T1D) and hyperglycemia within 10 years. By contrast, T1D develops in only approximately 15% of individuals who are positive for single AAbs (generally against glutamic acid decarboxylase [GADA]); hence, the single GADA(+) state may represent an early stage of T1D. METHODS: Here, we functionally, histologically, and molecularly phenotyped human islets from nondiabetic GADA(+) and T1D donors. RESULTS: Similar to the few remaining β cells in the T1D islets, GADA(+) donor islets demonstrated a preserved insulin secretory response. By contrast, α cell glucagon secretion was dysregulated in both GADA(+) and T1D islets, with impaired glucose suppression of glucagon secretion. Single-cell RNA-Seq of GADA(+) α cells revealed distinct abnormalities in glycolysis and oxidative phosphorylation pathways and a marked downregulation of cAMP-dependent protein kinase inhibitor β (PKIB), providing a molecular basis for the loss of glucose suppression and the increased effect of 3-isobutyl-1-methylxanthine (IBMX) observed in GADA(+) donor islets. CONCLUSION: We found that α cell dysfunction was present during the early stages of islet autoimmunity at a time when β cell mass was still normal, raising important questions about the role of early α cell dysfunction in the progression of T1D. FUNDING: This work was supported by grants from the NIH (3UC4DK112217-01S1, U01DK123594-02, UC4DK112217, UC4DK112232, U01DK123716, and P30 DK019525) and the Vanderbilt Diabetes Research and Training Center (DK20593). American Society for Clinical Investigation 2022-06-01 2022-06-01 /pmc/articles/PMC9151702/ /pubmed/35642629 http://dx.doi.org/10.1172/JCI156243 Text en © 2022 Doliba et al. https://creativecommons.org/licenses/by/4.0/This work is licensed under the Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Clinical Medicine
Doliba, Nicolai M.
Rozo, Andrea V.
Roman, Jeffrey
Qin, Wei
Traum, Daniel
Gao, Long
Liu, Jinping
Manduchi, Elisabetta
Liu, Chengyang
Golson, Maria L.
Vahedi, Golnaz
Naji, Ali
Matschinsky, Franz M.
Atkinson, Mark A.
Powers, Alvin C.
Brissova, Marcela
Kaestner, Klaus H.
Stoffers, Doris A.
α Cell dysfunction in islets from nondiabetic, glutamic acid decarboxylase autoantibody–positive individuals
title α Cell dysfunction in islets from nondiabetic, glutamic acid decarboxylase autoantibody–positive individuals
title_full α Cell dysfunction in islets from nondiabetic, glutamic acid decarboxylase autoantibody–positive individuals
title_fullStr α Cell dysfunction in islets from nondiabetic, glutamic acid decarboxylase autoantibody–positive individuals
title_full_unstemmed α Cell dysfunction in islets from nondiabetic, glutamic acid decarboxylase autoantibody–positive individuals
title_short α Cell dysfunction in islets from nondiabetic, glutamic acid decarboxylase autoantibody–positive individuals
title_sort α cell dysfunction in islets from nondiabetic, glutamic acid decarboxylase autoantibody–positive individuals
topic Clinical Medicine
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9151702/
https://www.ncbi.nlm.nih.gov/pubmed/35642629
http://dx.doi.org/10.1172/JCI156243
work_keys_str_mv AT dolibanicolaim acelldysfunctioninisletsfromnondiabeticglutamicaciddecarboxylaseautoantibodypositiveindividuals
AT rozoandreav acelldysfunctioninisletsfromnondiabeticglutamicaciddecarboxylaseautoantibodypositiveindividuals
AT romanjeffrey acelldysfunctioninisletsfromnondiabeticglutamicaciddecarboxylaseautoantibodypositiveindividuals
AT qinwei acelldysfunctioninisletsfromnondiabeticglutamicaciddecarboxylaseautoantibodypositiveindividuals
AT traumdaniel acelldysfunctioninisletsfromnondiabeticglutamicaciddecarboxylaseautoantibodypositiveindividuals
AT gaolong acelldysfunctioninisletsfromnondiabeticglutamicaciddecarboxylaseautoantibodypositiveindividuals
AT liujinping acelldysfunctioninisletsfromnondiabeticglutamicaciddecarboxylaseautoantibodypositiveindividuals
AT manduchielisabetta acelldysfunctioninisletsfromnondiabeticglutamicaciddecarboxylaseautoantibodypositiveindividuals
AT liuchengyang acelldysfunctioninisletsfromnondiabeticglutamicaciddecarboxylaseautoantibodypositiveindividuals
AT golsonmarial acelldysfunctioninisletsfromnondiabeticglutamicaciddecarboxylaseautoantibodypositiveindividuals
AT vahedigolnaz acelldysfunctioninisletsfromnondiabeticglutamicaciddecarboxylaseautoantibodypositiveindividuals
AT najiali acelldysfunctioninisletsfromnondiabeticglutamicaciddecarboxylaseautoantibodypositiveindividuals
AT matschinskyfranzm acelldysfunctioninisletsfromnondiabeticglutamicaciddecarboxylaseautoantibodypositiveindividuals
AT atkinsonmarka acelldysfunctioninisletsfromnondiabeticglutamicaciddecarboxylaseautoantibodypositiveindividuals
AT powersalvinc acelldysfunctioninisletsfromnondiabeticglutamicaciddecarboxylaseautoantibodypositiveindividuals
AT brissovamarcela acelldysfunctioninisletsfromnondiabeticglutamicaciddecarboxylaseautoantibodypositiveindividuals
AT kaestnerklaush acelldysfunctioninisletsfromnondiabeticglutamicaciddecarboxylaseautoantibodypositiveindividuals
AT stoffersdorisa acelldysfunctioninisletsfromnondiabeticglutamicaciddecarboxylaseautoantibodypositiveindividuals
AT acelldysfunctioninisletsfromnondiabeticglutamicaciddecarboxylaseautoantibodypositiveindividuals