Cargando…
Using generative adversarial networks for genome variant calling from low depth ONT sequencing data
Genome variant calling is a challenging yet critical task for subsequent studies. Existing methods almost rely on high depth DNA sequencing data. Performance on low depth data drops a lot. Using public Oxford Nanopore (ONT) data of human being from the Genome in a Bottle (GIAB) Consortium, we traine...
Autores principales: | Yang, Han, Gu, Fei, Zhang, Lei, Hua, Xian-Sheng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9151722/ https://www.ncbi.nlm.nih.gov/pubmed/35637238 http://dx.doi.org/10.1038/s41598-022-12346-7 |
Ejemplares similares
-
Single-Image Depth Inference Using Generative Adversarial Networks
por: Tan, Daniel Stanley, et al.
Publicado: (2019) -
Depth Map Upsampling via Multi-Modal Generative Adversarial Network
por: Tan, Daniel Stanley, et al.
Publicado: (2019) -
Evaluation of Mycobacterium tuberculosis enrichment in metagenomic samples using ONT adaptive sequencing and amplicon sequencing for identification and variant calling
por: Su, Junhao, et al.
Publicado: (2023) -
Implicit domain adaptation with conditional generative adversarial networks for depth prediction in endoscopy
por: Rau, Anita, et al.
Publicado: (2019) -
Multiscale Attention Fusion for Depth Map Super-Resolution Generative Adversarial Networks
por: Xu, Dan, et al.
Publicado: (2023)