Cargando…

Dataset for deformation behavior of pure titanium grade 2 materials during continuous extrusion

There is a huge application and demand for titanium alloys with excellent upgraded mechanical, metallurgical, and material properties in modern industries. To fulfill the demand of modern industries metal forming process is highly desirable. Among all metal forming processes, a special type of cold...

Descripción completa

Detalles Bibliográficos
Autores principales: Besha, Mulualem Hailu, Sinha, Devendra Kumar, Asrat, Getenet, Gudeta, Dawit
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9151733/
https://www.ncbi.nlm.nih.gov/pubmed/35656125
http://dx.doi.org/10.1016/j.dib.2022.108309
Descripción
Sumario:There is a huge application and demand for titanium alloys with excellent upgraded mechanical, metallurgical, and material properties in modern industries. To fulfill the demand of modern industries metal forming process is highly desirable. Among all metal forming processes, a special type of cold forming called the continuous extrusion process has been highly appropriate to fulfill the demands. The theoretical analysis has been carried out through Upper Bound Method. The numerical simulation has been carried out through the three-dimensional finite element tool DEFORM-3D. The experimental plan and design have been carried out using Taguchi (2^3) array methods on the MINITAB platform by considering extrusion wheel velocity and feedstock temperature as chief extrusion parameters. The experimental validation process was executed on 12.5 mm CP- Titanium grade 2 feedstock materials using a TBJ350 CONFORM machine setup. The optimization process of parameters for the optimum value of the response variable was carried out through Grey Relational Analysis.