Cargando…

Wireless implantable optical probe for continuous monitoring of oxygen saturation in flaps and organ grafts

Continuous, real-time monitoring of perfusion after microsurgical free tissue transfer or solid organ allotransplantation procedures can facilitate early diagnosis of and intervention for anastomotic thrombosis. Current technologies including Doppler systems, cutaneous O(2)-sensing probes, and fluor...

Descripción completa

Detalles Bibliográficos
Autores principales: Guo, Hexia, Bai, Wubin, Ouyang, Wei, Liu, Yihan, Wu, Changsheng, Xu, Yameng, Weng, Yang, Zang, Hao, Liu, Yiming, Jacobson, Lauren, Hu, Ziying, Wang, Yihang, Arafa, Hany M., Yang, Quansan, Lu, Di, Li, Shuo, Zhang, Lin, Xiao, Xun, Vázquez-Guardado, Abraham, Ciatti, Joanna, Dempsey, Elizabeth, Ghoreishi-Haack, Nayereh, Waters, Emily A., Haney, Chad R., Westman, Amanda M., MacEwan, Matthew R., Pet, Mitchell A., Rogers, John A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9151749/
https://www.ncbi.nlm.nih.gov/pubmed/35637230
http://dx.doi.org/10.1038/s41467-022-30594-z
Descripción
Sumario:Continuous, real-time monitoring of perfusion after microsurgical free tissue transfer or solid organ allotransplantation procedures can facilitate early diagnosis of and intervention for anastomotic thrombosis. Current technologies including Doppler systems, cutaneous O(2)-sensing probes, and fluorine magnetic resonance imaging methods are limited by their intermittent measurements, requirements for skilled personnel, indirect interfaces, and/or their tethered connections. This paper reports a wireless, miniaturized, minimally invasive near-infrared spectroscopic system designed for uninterrupted monitoring of local-tissue oxygenation. A bioresorbable barbed structure anchors the probe stably at implantation sites for a time period matched to the clinical need, with the ability for facile removal afterward. The probe connects to a skin-interfaced electronic module for wireless access to essential physiological parameters, including local tissue oxygenation, pulse oxygenation, and heart rate. In vitro tests and in vivo studies in porcine flap and kidney models demonstrate the ability of the system to continuously measure oxygenation with high accuracy and sensitivity.