Cargando…

The interplay between ranking and communities in networks

Community detection and hierarchy extraction are usually thought of as separate inference tasks on networks. Considering only one of the two when studying real-world data can be an oversimplification. In this work, we present a generative model based on an interplay between community and hierarchica...

Descripción completa

Detalles Bibliográficos
Autores principales: Iacovissi, Laura, De Bacco, Caterina
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9151911/
https://www.ncbi.nlm.nih.gov/pubmed/35637266
http://dx.doi.org/10.1038/s41598-022-12730-3
Descripción
Sumario:Community detection and hierarchy extraction are usually thought of as separate inference tasks on networks. Considering only one of the two when studying real-world data can be an oversimplification. In this work, we present a generative model based on an interplay between community and hierarchical structures. It assumes that each node has a preference in the interaction mechanism and nodes with the same preference are more likely to interact, while heterogeneous interactions are still allowed. The sparsity of the network is exploited for implementing a more efficient algorithm. We demonstrate our method on synthetic and real-world data and compare performance with two standard approaches for community detection and ranking extraction. We find that the algorithm accurately retrieves the overall node’s preference in different scenarios, and we show that it can distinguish small subsets of nodes that behave differently than the majority. As a consequence, the model can recognize whether a network has an overall preferred interaction mechanism. This is relevant in situations where there is no clear “a priori” information about what structure explains the observed network datasets well. Our model allows practitioners to learn this automatically from the data.