Cargando…

Cerebellar Abnormalities on Proton MR Spectroscopy and Imaging in Patients With Gluten Ataxia: A Pilot Study

Gluten ataxia is a rare immune-mediated neurological disorder caused by the ingestion of gluten. The diagnosis is not straightforward as antibodies are present in only up to 38% of patients, but often at lower titers. The symptoms of ataxia may be mild at the onset but lead to permanent damage if re...

Descripción completa

Detalles Bibliográficos
Autores principales: Rawat, Vishwa, Tyagi, Ritu, Singh, Inder, Das, Prasenjit, Srivastava, Achal Kumar, Makharia, Govind K., Sharma, Uma
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9152097/
https://www.ncbi.nlm.nih.gov/pubmed/35655925
http://dx.doi.org/10.3389/fnhum.2022.782579
_version_ 1784717568948305920
author Rawat, Vishwa
Tyagi, Ritu
Singh, Inder
Das, Prasenjit
Srivastava, Achal Kumar
Makharia, Govind K.
Sharma, Uma
author_facet Rawat, Vishwa
Tyagi, Ritu
Singh, Inder
Das, Prasenjit
Srivastava, Achal Kumar
Makharia, Govind K.
Sharma, Uma
author_sort Rawat, Vishwa
collection PubMed
description Gluten ataxia is a rare immune-mediated neurological disorder caused by the ingestion of gluten. The diagnosis is not straightforward as antibodies are present in only up to 38% of patients, but often at lower titers. The symptoms of ataxia may be mild at the onset but lead to permanent damage if remain untreated. It is characterized by damage to the cerebellum however, the pathophysiology of the disease is not clearly understood. The present study investigated the neurochemical profile of vermis and right cerebellum and structural changes in various brain regions of patients with gluten ataxia (n = 6, age range 40–65 years) and compared it with healthy controls (n = 10, 40–55 years). Volumetric 3-D T1 and T1-weighted magnetic resonance imaging (MRI) in the three planes (axial, coronal, and sagittal) of the whole brain and single-voxel (1)H- magnetic resonance spectroscopy (MRS) of the vermis and right cerebellum were acquired on 3 T human MR scanner. The metabolite concentrations were estimated using LC Model (6.1–4A) while brain volumes were estimated using the online tool volBrain pipeline and CERES and corrected for partial volumes. The levels of neuro-metabolites (N-acetyl aspartate + N-acetyl aspartate glutamate, glycerophosphocholine + phosphocholine, and total creatine) were found to be significantly lower in vermis, while N-acetyl aspartate + N-acetyl aspartate glutamate and glycerophosphocholine + phosphocholine was lower in cerebellum regions in the patients with gluten ataxia compared to healthy controls. A significant reduction in the white matter of (total brain, cerebellum, and cerebrum); reduction in the volumes of cerebellum lobe (X) and thalamus while lateral ventricles were increased in the patients with gluten ataxia compared to healthy controls. The reduced neuronal metabolites along with structural changes in the brain suggested neuronal degeneration in the patients with gluten ataxia. Our preliminary findings may be useful in understanding the gluten-induced cerebral damage and indicated that MRI and MRS may serve as a non-invasive useful tool in the early diagnosis, thereby enabling better management of these patients.
format Online
Article
Text
id pubmed-9152097
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Frontiers Media S.A.
record_format MEDLINE/PubMed
spelling pubmed-91520972022-06-01 Cerebellar Abnormalities on Proton MR Spectroscopy and Imaging in Patients With Gluten Ataxia: A Pilot Study Rawat, Vishwa Tyagi, Ritu Singh, Inder Das, Prasenjit Srivastava, Achal Kumar Makharia, Govind K. Sharma, Uma Front Hum Neurosci Human Neuroscience Gluten ataxia is a rare immune-mediated neurological disorder caused by the ingestion of gluten. The diagnosis is not straightforward as antibodies are present in only up to 38% of patients, but often at lower titers. The symptoms of ataxia may be mild at the onset but lead to permanent damage if remain untreated. It is characterized by damage to the cerebellum however, the pathophysiology of the disease is not clearly understood. The present study investigated the neurochemical profile of vermis and right cerebellum and structural changes in various brain regions of patients with gluten ataxia (n = 6, age range 40–65 years) and compared it with healthy controls (n = 10, 40–55 years). Volumetric 3-D T1 and T1-weighted magnetic resonance imaging (MRI) in the three planes (axial, coronal, and sagittal) of the whole brain and single-voxel (1)H- magnetic resonance spectroscopy (MRS) of the vermis and right cerebellum were acquired on 3 T human MR scanner. The metabolite concentrations were estimated using LC Model (6.1–4A) while brain volumes were estimated using the online tool volBrain pipeline and CERES and corrected for partial volumes. The levels of neuro-metabolites (N-acetyl aspartate + N-acetyl aspartate glutamate, glycerophosphocholine + phosphocholine, and total creatine) were found to be significantly lower in vermis, while N-acetyl aspartate + N-acetyl aspartate glutamate and glycerophosphocholine + phosphocholine was lower in cerebellum regions in the patients with gluten ataxia compared to healthy controls. A significant reduction in the white matter of (total brain, cerebellum, and cerebrum); reduction in the volumes of cerebellum lobe (X) and thalamus while lateral ventricles were increased in the patients with gluten ataxia compared to healthy controls. The reduced neuronal metabolites along with structural changes in the brain suggested neuronal degeneration in the patients with gluten ataxia. Our preliminary findings may be useful in understanding the gluten-induced cerebral damage and indicated that MRI and MRS may serve as a non-invasive useful tool in the early diagnosis, thereby enabling better management of these patients. Frontiers Media S.A. 2022-05-17 /pmc/articles/PMC9152097/ /pubmed/35655925 http://dx.doi.org/10.3389/fnhum.2022.782579 Text en Copyright © 2022 Rawat, Tyagi, Singh, Das, Srivastava, Makharia and Sharma. https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
spellingShingle Human Neuroscience
Rawat, Vishwa
Tyagi, Ritu
Singh, Inder
Das, Prasenjit
Srivastava, Achal Kumar
Makharia, Govind K.
Sharma, Uma
Cerebellar Abnormalities on Proton MR Spectroscopy and Imaging in Patients With Gluten Ataxia: A Pilot Study
title Cerebellar Abnormalities on Proton MR Spectroscopy and Imaging in Patients With Gluten Ataxia: A Pilot Study
title_full Cerebellar Abnormalities on Proton MR Spectroscopy and Imaging in Patients With Gluten Ataxia: A Pilot Study
title_fullStr Cerebellar Abnormalities on Proton MR Spectroscopy and Imaging in Patients With Gluten Ataxia: A Pilot Study
title_full_unstemmed Cerebellar Abnormalities on Proton MR Spectroscopy and Imaging in Patients With Gluten Ataxia: A Pilot Study
title_short Cerebellar Abnormalities on Proton MR Spectroscopy and Imaging in Patients With Gluten Ataxia: A Pilot Study
title_sort cerebellar abnormalities on proton mr spectroscopy and imaging in patients with gluten ataxia: a pilot study
topic Human Neuroscience
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9152097/
https://www.ncbi.nlm.nih.gov/pubmed/35655925
http://dx.doi.org/10.3389/fnhum.2022.782579
work_keys_str_mv AT rawatvishwa cerebellarabnormalitiesonprotonmrspectroscopyandimaginginpatientswithglutenataxiaapilotstudy
AT tyagiritu cerebellarabnormalitiesonprotonmrspectroscopyandimaginginpatientswithglutenataxiaapilotstudy
AT singhinder cerebellarabnormalitiesonprotonmrspectroscopyandimaginginpatientswithglutenataxiaapilotstudy
AT dasprasenjit cerebellarabnormalitiesonprotonmrspectroscopyandimaginginpatientswithglutenataxiaapilotstudy
AT srivastavaachalkumar cerebellarabnormalitiesonprotonmrspectroscopyandimaginginpatientswithglutenataxiaapilotstudy
AT makhariagovindk cerebellarabnormalitiesonprotonmrspectroscopyandimaginginpatientswithglutenataxiaapilotstudy
AT sharmauma cerebellarabnormalitiesonprotonmrspectroscopyandimaginginpatientswithglutenataxiaapilotstudy