Cargando…
Classification of cardiac arrhythmia using a convolutional neural network and bi-directional long short-term memory
Cardiac arrhythmia is a leading cause of cardiovascular disease, with a high fatality rate worldwide. The timely diagnosis of cardiac arrhythmias, determined by irregular and fast heart rate, may help lower the risk of strokes. Electrocardiogram signals have been widely used to identify arrhythmias...
Autores principales: | Hassan, Shahab Ul, Mohd Zahid, Mohd S, Abdullah, Talal AA, Husain, Khaleel |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
SAGE Publications
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9152186/ https://www.ncbi.nlm.nih.gov/pubmed/35656286 http://dx.doi.org/10.1177/20552076221102766 |
Ejemplares similares
-
High Precision Dimensional Measurement with Convolutional Neural Network and Bi-Directional Long Short-Term Memory (LSTM)
por: Wang, Yuhao, et al.
Publicado: (2019) -
Cardiac Arrhythmia Classification by Multi-Layer Perceptron and Convolution Neural Networks
por: Savalia, Shalin, et al.
Publicado: (2018) -
Prediction and Diagnosis of Respiratory Disease by Combining Convolutional Neural Network and Bi-directional Long Short-Term Memory Methods
por: Li, Li, et al.
Publicado: (2022) -
Mixed convolutional and long short-term memory network for the detection of lethal ventricular arrhythmia
por: Picon, Artzai, et al.
Publicado: (2019) -
A Study on Arrhythmia via ECG Signal Classification Using the Convolutional Neural Network
por: Wu, Mengze, et al.
Publicado: (2021)