Cargando…

Characterization of a Novel Esterase Est33 From an Antarctic Bacterium: A Representative of a New Esterase Family

Studies of microorganisms from extreme environments can sometimes reveal novel proteins with unique properties. Here, we identified a novel esterase gene (Est33) from an Antarctic bacterium. The protein was expressed and purified for biochemical characterizations. Site-mutation variants including S9...

Descripción completa

Detalles Bibliográficos
Autores principales: Liu, Xiaoyu, Zhou, Mingyang, Sun, Rui, Xing, Shu, Wu, Tao, He, Hailun, Chen, Jianbin, Bielicki, John Kevin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9152352/
https://www.ncbi.nlm.nih.gov/pubmed/35655995
http://dx.doi.org/10.3389/fmicb.2022.855658
Descripción
Sumario:Studies of microorganisms from extreme environments can sometimes reveal novel proteins with unique properties. Here, we identified a novel esterase gene (Est33) from an Antarctic bacterium. The protein was expressed and purified for biochemical characterizations. Site-mutation variants including S94A, D205A, and H233A were constructed to explore the structure–function relationship of the catalytic triad of Est33, and we found mutating Ser(94), Asp(205), and His(233) residues lead to a complete loss of enzyme activity. In addition, the catalytic Ser(94) located in a conserved pentapeptide motif GVSWG. Phylogenetic analysis showed that Est33 and its closely related homologs belonged to an independent group apart from other known family members, indicating that Est33 represented a new family of esterase. The Est33 enzyme was found to be a cold-active esterase retaining 25%–100% activity from 10°C to 30°C and to have optimal catalytic activity toward p-nitrophenol acetate (30°C and pH7.5). The serine modifying reagent phenylmethylsulfonyl fluoride inhibited the activity of Est33 by 77.34%, while thiol reagents such as dithiol threitol (DTT) activated the enzyme by 3-fold. Metal chelating reagents EDTA had no effects, indicating that Est33 is not a metalloenzyme. Collectively, these results indicate that Est33 constitutes the first member of a novel esterase family XXI that has been identified.