Cargando…

Chinese Clinical Named Entity Recognition with ALBERT and MHA Mechanism

Traditional clinical named entity recognition methods fail to balance the effectiveness of feature extraction of unstructured text and the complexity of neural network models. We propose a model based on ALBERT and a multihead attention (MHA) mechanism to solve this problem. Structurally, the model...

Descripción completa

Detalles Bibliográficos
Autores principales: Li, Dongmei, Long, Jiao, Qu, Jintao, Zhang, Xiaoping
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9152388/
https://www.ncbi.nlm.nih.gov/pubmed/35656458
http://dx.doi.org/10.1155/2022/2056039
Descripción
Sumario:Traditional clinical named entity recognition methods fail to balance the effectiveness of feature extraction of unstructured text and the complexity of neural network models. We propose a model based on ALBERT and a multihead attention (MHA) mechanism to solve this problem. Structurally, the model first obtains character-level word embeddings through the ALBERT pretraining language model, then inputs the word embeddings into the iterated dilated convolutional neural network model to quickly extract global semantic information, and decodes the predicted labels through conditional random fields to obtain the optimal label sequence. Also, we apply the MHA mechanism to capture intercharacter dependencies from multiple aspects. Furthermore, we use the RAdam optimizer to boost the convergence speed and improve the generalization ability of our model. Experimental results show that our model achieves an F1 score of 85.63% on the CCKS-2019 dataset—an increase of 4.36% compared to the baseline model.