Cargando…
Chinese Clinical Named Entity Recognition with ALBERT and MHA Mechanism
Traditional clinical named entity recognition methods fail to balance the effectiveness of feature extraction of unstructured text and the complexity of neural network models. We propose a model based on ALBERT and a multihead attention (MHA) mechanism to solve this problem. Structurally, the model...
Autores principales: | Li, Dongmei, Long, Jiao, Qu, Jintao, Zhang, Xiaoping |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9152388/ https://www.ncbi.nlm.nih.gov/pubmed/35656458 http://dx.doi.org/10.1155/2022/2056039 |
Ejemplares similares
-
Clinical Named Entity Recognition From Chinese Electronic Health Records via Machine Learning Methods
por: Zhang, Yu, et al.
Publicado: (2018) -
Multi-task learning for Chinese clinical named entity recognition with external knowledge
por: Cheng, Ming, et al.
Publicado: (2021) -
Improving clinical named entity recognition in Chinese using the graphical and phonetic feature
por: Wang, Yifei, et al.
Publicado: (2019) -
Named entity recognition for Chinese based on global pointer and adversarial training
por: Li, Hongjun, et al.
Publicado: (2023) -
Response to the white paper on MHA reform: marginalisation of patients detained under part III of the MHA
por: Markham, Sarah
Publicado: (2021)