Cargando…
Multiple Traffic Target Tracking with Spatial-Temporal Affinity Network
Traffic target tracking is a core task in intelligent transportation system because it is useful for scene understanding and vehicle autonomous driving. Most state-of-the-art (SOTA) multiple object tracking (MOT) methods adopt a two-step procedure: object detection followed by data association. The...
Autores principales: | Sun, Yamin, Zhao, Yue, Wang, Sirui |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9152393/ https://www.ncbi.nlm.nih.gov/pubmed/35655505 http://dx.doi.org/10.1155/2022/9693767 |
Ejemplares similares
-
Spatial-temporal hypergraph convolutional network for traffic forecasting
por: Zhao, Zhenzhen, et al.
Publicado: (2023) -
Multicomponent Spatial-Temporal Graph Attention Convolution Networks for Traffic Prediction with Spatially Sparse Data
por: Liu, Shaohua, et al.
Publicado: (2021) -
Using temporal detrending to observe the spatial correlation of traffic
por: Ermagun, Alireza, et al.
Publicado: (2017) -
Global-Local Spatial-Temporal Residual Correlation Network for Urban Traffic Status Prediction
por: Bao, Yin-Xin, et al.
Publicado: (2022) -
STHSGCN: Spatial-temporal heterogeneous and synchronous graph convolution network for traffic flow prediction
por: Yu, Xian, et al.
Publicado: (2023)