Cargando…
Pancancer Analyses Reveal Genomics and Clinical Characteristics of the SETDB1 in Human Tumors
BACKGROUND: Malignant tumor is one of the most common diseases that seriously affect human health. The prior literature has reported the biological function and potential therapeutic targets of SET domain bifurcated histone lysine methyltransferase 1 (SETDB1) as an oncogene. However, SETDB1 has rare...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9152430/ https://www.ncbi.nlm.nih.gov/pubmed/35656340 http://dx.doi.org/10.1155/2022/6115878 |
Sumario: | BACKGROUND: Malignant tumor is one of the most common diseases that seriously affect human health. The prior literature has reported the biological function and potential therapeutic targets of SET domain bifurcated histone lysine methyltransferase 1 (SETDB1) as an oncogene. However, SETDB1 has rarely been analyzed from a pan-cancer perspective. METHODS: Bioinformatics analysis tools and databases, including GeneCards, National Center for Biotechnology Information (NCBI), UniProt, Illustrator for Biological Sequences (IBS), Human Protein Atlas (HPA), GEPIA, TIMER2, Sangerbox 3.0, UALCAN, Kaplan-Meier (K-M) plotter, cBioPortal, Catalogue Of Somatic Mutations In Cancer (COSMIC), PhosphoSitePlus, TISIDB, STRING, and GeneMANIA, were utilized to clarify the biological functions and clinical significance of SETDB1 from a pan-cancer perspective. RESULTS: In this study, the pan-cancer analysis demonstrated that SETDB1 showed significantly differential expression in most tumor tissues and paracancerous tissues, and SETDB1 expression was associated with clinicopathological features and clinical prognosis. We also found that SETDB1 mutations occurred in most tumors and were related to tumorigenesis. In addition, DNA methylation of SETDB1 primarily occurred at the cg10444928 site and was associated with prognosis in several human tumors. The predicted phosphorylation site of SETDB1 was Ser1006. We found that SETDB1 was significantly related to the specific tumor-infiltrating immune cell populations and expression of clinically targetable immune checkpoints and may be a promising immunotherapy target. The Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses also indicated that SETDB1 may function as crucial regulator in carcinogenesis of human cancers. CONCLUSIONS: SETDB1 is an important oncogene involved in tumorigenesis and tumor progression through different biological mechanisms. Furthermore, SETDB1 may be a potential therapeutic target for cancer treatment. |
---|