Cargando…
A machine learning approach to identifying delirium from electronic health records
The identification of delirium in electronic health records (EHRs) remains difficult due to inadequate assessment or under-documentation. The purpose of this research is to present a classification model that identifies delirium using retrospective EHR data. Delirium was confirmed with the Confusion...
Autores principales: | Kim, Jae Hyun, Hua, May, Whittington, Robert A, Lee, Junghwan, Liu, Cong, Ta, Casey N, Marcantonio, Edward R, Goldberg, Terry E, Weng, Chunhua |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9152701/ https://www.ncbi.nlm.nih.gov/pubmed/35663114 http://dx.doi.org/10.1093/jamiaopen/ooac042 |
Ejemplares similares
-
Detecting Systemic Data Quality Issues in Electronic Health Records
por: Ta, Casey N., et al.
Publicado: (2019) -
Machine learning identifies long COVID patterns from electronic health records
Publicado: (2023) -
Severity Prediction for COVID-19 Patients via Recurrent Neural Networks
por: Lee, Junghwan, et al.
Publicado: (2021) -
From clinical trials to clinical practice: How long are drugs tested and then used by patients?
por: Yuan, Chi, et al.
Publicado: (2021) -
Columbia Open Health Data for COVID-19 Research: Database Analysis
por: Lee, Junghwan, et al.
Publicado: (2021)