Cargando…
A Machine Learning Approach for Detecting Digital Behavioral Patterns of Depression Using Nonintrusive Smartphone Data (Complementary Path to Patient Health Questionnaire-9 Assessment): Prospective Observational Study
BACKGROUND: Depression is a major global cause of morbidity, an economic burden, and the greatest health challenge leading to chronic disability. Mobile monitoring of mental conditions has long been a sought-after metric to overcome the problems associated with the screening, diagnosis, and monitori...
Autores principales: | Choudhary, Soumya, Thomas, Nikita, Ellenberger, Janine, Srinivasan, Girish, Cohen, Roy |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
JMIR Publications
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9152726/ https://www.ncbi.nlm.nih.gov/pubmed/35420993 http://dx.doi.org/10.2196/37736 |
Ejemplares similares
-
A Machine Learning Approach for Continuous Mining of Nonidentifiable Smartphone Data to Create a Novel Digital Biomarker Detecting Generalized Anxiety Disorder: Prospective Cohort Study
por: Choudhary, Soumya, et al.
Publicado: (2022) -
Evaluation of Fear Using Nonintrusive Measurement of Multimodal Sensors
por: Choi, Jong-Suk, et al.
Publicado: (2015) -
The Use of Terrestrial and Maritime Autonomous Vehicles in Nonintrusive Object Inspection
por: Mamchur, Dmytro, et al.
Publicado: (2022) -
Nonintrusive Load Monitoring Based on Advanced Deep Learning and Novel Signature
por: Kim, Jihyun, et al.
Publicado: (2017) -
Noncontact and Nonintrusive Microwave-Microfluidic Flow Sensor for Energy and Biomedical Engineering
por: Zarifi, Mohammad Hossein, et al.
Publicado: (2018)