Cargando…
Host-dependent impairment of parasite development and reproduction in the acanthocephalan model
BACKGROUND: A central question in parasitology is why parasites mature and reproduce in some host species but not in others. Yet, a better understanding of the inability of parasites to complete their life cycles in less suitable hosts may hold clues for their control. To shed light on the molecular...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9153150/ https://www.ncbi.nlm.nih.gov/pubmed/35642000 http://dx.doi.org/10.1186/s13578-022-00818-2 |
_version_ | 1784717789117808640 |
---|---|
author | Schmidt, Hanno Mauer, Katharina Hankeln, Thomas Herlyn, Holger |
author_facet | Schmidt, Hanno Mauer, Katharina Hankeln, Thomas Herlyn, Holger |
author_sort | Schmidt, Hanno |
collection | PubMed |
description | BACKGROUND: A central question in parasitology is why parasites mature and reproduce in some host species but not in others. Yet, a better understanding of the inability of parasites to complete their life cycles in less suitable hosts may hold clues for their control. To shed light on the molecular basis of parasite (non-)maturation, we analyzed transcriptomes of thorny-headed worms (Acanthocephala: Pomphorhynchus laevis), and compared developmentally arrested worms excised from European eel (Anguilla anguilla) to developmentally unrestricted worms from barbel (Barbus barbus). RESULTS: Based on 20 RNA-Seq datasets, we demonstrate that transcriptomic profiles are more similar between P. laevis males and females from eel than between their counterparts from barbel. Impairment of sexual phenotype development was reflected in gene ontology enrichment analyses of genes having differential transcript abundances. Genes having reproduction- and energy-related annotations were found to be affected by parasitizing either eel or barbel. According to this, the molecular machinery of male and female acanthocephalans from the eel is less tailored to reproduction and more to coping with the less suitable environment provided by this host. The pattern was reversed in their counterparts from the definitive host, barbel. CONCLUSIONS: Comparative analysis of transcriptomes of developmentally arrested and reproducing parasites elucidates the challenges parasites encounter in hosts which are unsuitable for maturation and reproduction. By studying a gonochoric species, we were also able to highlight sex-specific traits. In fact, transcriptomic evidence for energy shortage in female acanthocephalans associates with their larger body size. Thus, energy metabolism and glycolysis should be promising targets for the treatment of acanthocephaliasis. Although inherently enabling a higher resolution in heterosexuals, the comparison of parasites from definitive hosts and less suitable hosts, in which the parasites merely survive, should be applicable to hermaphroditic helminths. This may open new perspectives in the control of other helminth pathogens of humans and livestock. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s13578-022-00818-2. |
format | Online Article Text |
id | pubmed-9153150 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-91531502022-06-01 Host-dependent impairment of parasite development and reproduction in the acanthocephalan model Schmidt, Hanno Mauer, Katharina Hankeln, Thomas Herlyn, Holger Cell Biosci Research BACKGROUND: A central question in parasitology is why parasites mature and reproduce in some host species but not in others. Yet, a better understanding of the inability of parasites to complete their life cycles in less suitable hosts may hold clues for their control. To shed light on the molecular basis of parasite (non-)maturation, we analyzed transcriptomes of thorny-headed worms (Acanthocephala: Pomphorhynchus laevis), and compared developmentally arrested worms excised from European eel (Anguilla anguilla) to developmentally unrestricted worms from barbel (Barbus barbus). RESULTS: Based on 20 RNA-Seq datasets, we demonstrate that transcriptomic profiles are more similar between P. laevis males and females from eel than between their counterparts from barbel. Impairment of sexual phenotype development was reflected in gene ontology enrichment analyses of genes having differential transcript abundances. Genes having reproduction- and energy-related annotations were found to be affected by parasitizing either eel or barbel. According to this, the molecular machinery of male and female acanthocephalans from the eel is less tailored to reproduction and more to coping with the less suitable environment provided by this host. The pattern was reversed in their counterparts from the definitive host, barbel. CONCLUSIONS: Comparative analysis of transcriptomes of developmentally arrested and reproducing parasites elucidates the challenges parasites encounter in hosts which are unsuitable for maturation and reproduction. By studying a gonochoric species, we were also able to highlight sex-specific traits. In fact, transcriptomic evidence for energy shortage in female acanthocephalans associates with their larger body size. Thus, energy metabolism and glycolysis should be promising targets for the treatment of acanthocephaliasis. Although inherently enabling a higher resolution in heterosexuals, the comparison of parasites from definitive hosts and less suitable hosts, in which the parasites merely survive, should be applicable to hermaphroditic helminths. This may open new perspectives in the control of other helminth pathogens of humans and livestock. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s13578-022-00818-2. BioMed Central 2022-05-31 /pmc/articles/PMC9153150/ /pubmed/35642000 http://dx.doi.org/10.1186/s13578-022-00818-2 Text en © The Author(s) 2022 https://creativecommons.org/licenses/by/4.0/Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/ (https://creativecommons.org/publicdomain/zero/1.0/) ) applies to the data made available in this article, unless otherwise stated in a credit line to the data. |
spellingShingle | Research Schmidt, Hanno Mauer, Katharina Hankeln, Thomas Herlyn, Holger Host-dependent impairment of parasite development and reproduction in the acanthocephalan model |
title | Host-dependent impairment of parasite development and reproduction in the acanthocephalan model |
title_full | Host-dependent impairment of parasite development and reproduction in the acanthocephalan model |
title_fullStr | Host-dependent impairment of parasite development and reproduction in the acanthocephalan model |
title_full_unstemmed | Host-dependent impairment of parasite development and reproduction in the acanthocephalan model |
title_short | Host-dependent impairment of parasite development and reproduction in the acanthocephalan model |
title_sort | host-dependent impairment of parasite development and reproduction in the acanthocephalan model |
topic | Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9153150/ https://www.ncbi.nlm.nih.gov/pubmed/35642000 http://dx.doi.org/10.1186/s13578-022-00818-2 |
work_keys_str_mv | AT schmidthanno hostdependentimpairmentofparasitedevelopmentandreproductionintheacanthocephalanmodel AT mauerkatharina hostdependentimpairmentofparasitedevelopmentandreproductionintheacanthocephalanmodel AT hankelnthomas hostdependentimpairmentofparasitedevelopmentandreproductionintheacanthocephalanmodel AT herlynholger hostdependentimpairmentofparasitedevelopmentandreproductionintheacanthocephalanmodel |