Cargando…
Machine learning for understanding and predicting neurodevelopmental outcomes in premature infants: a systematic review
BACKGROUND: Machine learning has been attracting increasing attention for use in healthcare applications, including neonatal medicine. One application for this tool is in understanding and predicting neurodevelopmental outcomes in preterm infants. In this study, we have carried out a systematic revi...
Autores principales: | Baker, Stephanie, Kandasamy, Yogavijayan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group US
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9153218/ https://www.ncbi.nlm.nih.gov/pubmed/35641551 http://dx.doi.org/10.1038/s41390-022-02120-w |
Ejemplares similares
-
Effects of prematurity on long-term renal health: a systematic review
por: Sangla, Ananya, et al.
Publicado: (2021) -
Extra-uterine renal growth in preterm infants: Oligonephropathy and prematurity
por: Kandasamy, Yogavijayan, et al.
Publicado: (2013) -
An Exploratory Review on the Potential of Artificial Intelligence for Early Detection of Acute Kidney Injury in Preterm Neonates
por: Kandasamy, Yogavijayan, et al.
Publicado: (2023) -
Retinopathy of prematurity and neurodevelopmental outcomes in preterm infants: A systematic review and meta-analysis
por: Diggikar, Shivashankar, et al.
Publicado: (2023) -
Neurodevelopmental Outcomes in Infants with Retinopathy of Prematurity and Bevacizumab Treatment
por: Lien, Reyin, et al.
Publicado: (2016)