Cargando…
Grafting with rootstocks promotes phenolic compound accumulation in grape berry skin during development based on integrative multi-omics analysis
In viticulture, grafting has been practiced widely and influences grape development as well as berry and wine quality. However, there is limited understanding of the effects of rootstocks on grape phenolic compounds, which are located primarily in the berry skin and contribute to certain sensory att...
Autores principales: | , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9154076/ https://www.ncbi.nlm.nih.gov/pubmed/35664240 http://dx.doi.org/10.1093/hr/uhac055 |
_version_ | 1784717964410355712 |
---|---|
author | Zhang, Fuchun Zhong, Haixia Zhou, Xiaoming Pan, Mingqi Xu, Juan Liu, Mingbo Wang, Min Liu, Guotian Xu, Tengfei Wang, Yuejin Wu, Xinyu Xu, Yan |
author_facet | Zhang, Fuchun Zhong, Haixia Zhou, Xiaoming Pan, Mingqi Xu, Juan Liu, Mingbo Wang, Min Liu, Guotian Xu, Tengfei Wang, Yuejin Wu, Xinyu Xu, Yan |
author_sort | Zhang, Fuchun |
collection | PubMed |
description | In viticulture, grafting has been practiced widely and influences grape development as well as berry and wine quality. However, there is limited understanding of the effects of rootstocks on grape phenolic compounds, which are located primarily in the berry skin and contribute to certain sensory attributes of wine. In this study, scion–rootstock interactions were investigated at the green-berry stage and the veraison stage when grapevines were hetero-grafted with three commonly used rootstock genotypes (5BB, 101-14MG, and SO4). Physiological investigations showed that hetero-grafts, especially CS/5BB, contained higher concentrations of total proanthocyanidins (PAs) and various PA components in berry skins compared with the auto-grafted grapevines. Further metabolomics analysis identified 105 differentially accumulated flavonoid compounds, the majority of which, including anthocyanins, PAs, and flavonols, were significantly increased in the berry skins of hetero-grafted grapevines compared with auto-grafted controls. In addition, transcriptomic analysis of the same samples identified several thousand differentially expressed genes between hetero-grafted and auto-grafted vines. The three rootstocks not only increased the transcript levels of stilbene, anthocyanin, PA, and flavonol synthesis genes but also affected the expression of numerous transcription factor genes. Taken together, our results suggest that hetero-grafting can promote phenolic compound accumulation in grape berry skin during development. These findings provide new insights for improving the application value of grafting by enhancing the accumulation of nutritious phenolic components in grape. |
format | Online Article Text |
id | pubmed-9154076 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Oxford University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-91540762022-06-04 Grafting with rootstocks promotes phenolic compound accumulation in grape berry skin during development based on integrative multi-omics analysis Zhang, Fuchun Zhong, Haixia Zhou, Xiaoming Pan, Mingqi Xu, Juan Liu, Mingbo Wang, Min Liu, Guotian Xu, Tengfei Wang, Yuejin Wu, Xinyu Xu, Yan Hortic Res Article In viticulture, grafting has been practiced widely and influences grape development as well as berry and wine quality. However, there is limited understanding of the effects of rootstocks on grape phenolic compounds, which are located primarily in the berry skin and contribute to certain sensory attributes of wine. In this study, scion–rootstock interactions were investigated at the green-berry stage and the veraison stage when grapevines were hetero-grafted with three commonly used rootstock genotypes (5BB, 101-14MG, and SO4). Physiological investigations showed that hetero-grafts, especially CS/5BB, contained higher concentrations of total proanthocyanidins (PAs) and various PA components in berry skins compared with the auto-grafted grapevines. Further metabolomics analysis identified 105 differentially accumulated flavonoid compounds, the majority of which, including anthocyanins, PAs, and flavonols, were significantly increased in the berry skins of hetero-grafted grapevines compared with auto-grafted controls. In addition, transcriptomic analysis of the same samples identified several thousand differentially expressed genes between hetero-grafted and auto-grafted vines. The three rootstocks not only increased the transcript levels of stilbene, anthocyanin, PA, and flavonol synthesis genes but also affected the expression of numerous transcription factor genes. Taken together, our results suggest that hetero-grafting can promote phenolic compound accumulation in grape berry skin during development. These findings provide new insights for improving the application value of grafting by enhancing the accumulation of nutritious phenolic components in grape. Oxford University Press 2022-03-14 /pmc/articles/PMC9154076/ /pubmed/35664240 http://dx.doi.org/10.1093/hr/uhac055 Text en © The Author(s) 2022. Published by Oxford University Press on behalf of Nanjing Agricultural University https://creativecommons.org/licenses/by/4.0/This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Article Zhang, Fuchun Zhong, Haixia Zhou, Xiaoming Pan, Mingqi Xu, Juan Liu, Mingbo Wang, Min Liu, Guotian Xu, Tengfei Wang, Yuejin Wu, Xinyu Xu, Yan Grafting with rootstocks promotes phenolic compound accumulation in grape berry skin during development based on integrative multi-omics analysis |
title | Grafting with rootstocks promotes phenolic compound accumulation in grape berry skin during development based on integrative multi-omics analysis |
title_full | Grafting with rootstocks promotes phenolic compound accumulation in grape berry skin during development based on integrative multi-omics analysis |
title_fullStr | Grafting with rootstocks promotes phenolic compound accumulation in grape berry skin during development based on integrative multi-omics analysis |
title_full_unstemmed | Grafting with rootstocks promotes phenolic compound accumulation in grape berry skin during development based on integrative multi-omics analysis |
title_short | Grafting with rootstocks promotes phenolic compound accumulation in grape berry skin during development based on integrative multi-omics analysis |
title_sort | grafting with rootstocks promotes phenolic compound accumulation in grape berry skin during development based on integrative multi-omics analysis |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9154076/ https://www.ncbi.nlm.nih.gov/pubmed/35664240 http://dx.doi.org/10.1093/hr/uhac055 |
work_keys_str_mv | AT zhangfuchun graftingwithrootstockspromotesphenoliccompoundaccumulationingrapeberryskinduringdevelopmentbasedonintegrativemultiomicsanalysis AT zhonghaixia graftingwithrootstockspromotesphenoliccompoundaccumulationingrapeberryskinduringdevelopmentbasedonintegrativemultiomicsanalysis AT zhouxiaoming graftingwithrootstockspromotesphenoliccompoundaccumulationingrapeberryskinduringdevelopmentbasedonintegrativemultiomicsanalysis AT panmingqi graftingwithrootstockspromotesphenoliccompoundaccumulationingrapeberryskinduringdevelopmentbasedonintegrativemultiomicsanalysis AT xujuan graftingwithrootstockspromotesphenoliccompoundaccumulationingrapeberryskinduringdevelopmentbasedonintegrativemultiomicsanalysis AT liumingbo graftingwithrootstockspromotesphenoliccompoundaccumulationingrapeberryskinduringdevelopmentbasedonintegrativemultiomicsanalysis AT wangmin graftingwithrootstockspromotesphenoliccompoundaccumulationingrapeberryskinduringdevelopmentbasedonintegrativemultiomicsanalysis AT liuguotian graftingwithrootstockspromotesphenoliccompoundaccumulationingrapeberryskinduringdevelopmentbasedonintegrativemultiomicsanalysis AT xutengfei graftingwithrootstockspromotesphenoliccompoundaccumulationingrapeberryskinduringdevelopmentbasedonintegrativemultiomicsanalysis AT wangyuejin graftingwithrootstockspromotesphenoliccompoundaccumulationingrapeberryskinduringdevelopmentbasedonintegrativemultiomicsanalysis AT wuxinyu graftingwithrootstockspromotesphenoliccompoundaccumulationingrapeberryskinduringdevelopmentbasedonintegrativemultiomicsanalysis AT xuyan graftingwithrootstockspromotesphenoliccompoundaccumulationingrapeberryskinduringdevelopmentbasedonintegrativemultiomicsanalysis |