Cargando…

Short-Term Fasting Attenuates Overall Steroid Hormone Biosynthesis in Healthy Young Women

CONTEXT: Fasting is stressful for the human body. It is managed by metabolic adaptations maintaining energy homeostasis and involves steroid hormone biosynthesis, but the exact interplay between energy and steroid metabolism remains elusive. Women with polycystic ovary syndrome (PCOS) suffer from di...

Descripción completa

Detalles Bibliográficos
Autores principales: Magyar, Benjamin P, Santi, Maristella, Sommer, Grit, Nuoffer, Jean-Marc, Leichtle, Alexander, Grössl, Michael, Fluck, Christa E
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9154271/
https://www.ncbi.nlm.nih.gov/pubmed/35668998
http://dx.doi.org/10.1210/jendso/bvac075
Descripción
Sumario:CONTEXT: Fasting is stressful for the human body. It is managed by metabolic adaptations maintaining energy homeostasis and involves steroid hormone biosynthesis, but the exact interplay between energy and steroid metabolism remains elusive. Women with polycystic ovary syndrome (PCOS) suffer from disturbed metabolism and androgen excess, while in women with anorexia nervosa, cortisol and androgen production are decreased. By contrast, starvation of steroidogenic cells shifts adrenal steroid biosynthesis toward enhanced androgen production. AIM: This study investigated the effect of fasting on steroid production in healthy women. METHODS: Twenty healthy young women fasted for 48 hours; steroid profiles from plasma and urine samples were assessed at baseline, after 24 hours, and 48 hours by liquid and gas chromatography–mass spectrometry. RESULTS: Fasting did not change overall steroidogenesis, although it increased progestogen production and lowered relative mineralocorticoid, glucocorticoid, and androgen production. The largest decrease in urine metabolites was seen for β-cortol, dehydroepiandrosterone, and androstenediol; higher levels were found for pregnanediol in urine and progesterone and aldosterone in serum. Activity of 17α-hydroxylase/17,20-lyase (CYP17A1), essential for androgen biosynthesis, was decreased after fasting in healthy women as were 21-hydroxylase (CYP21A2) and 5α-reductase activities. By contrast, hydroxysteroid 11-beta dehydrogenase 1 (HSD11B1) activity for cortisol inactivation seemed to increase with fasting. CONCLUSION: Significant changes in steroid metabolism occurred after 48 hours of fasting in healthy women. In contrast to metabolic changes seen at baseline in PCOS women compared to healthy women, and after starving of steroidogenic cells, no androgen excess was observed after short-term fasting in healthy young women.