Cargando…
Pharmacological Mechanism of Shen Huang Chong Ji for Treating Alzheimer's Disease Based on Network Pharmacology and Experimental Validation
The traditional Chinese medicine (TCM) formula, Sheng Huang Chong Ji (SHCJ) is largely applied for treating Alzheimer's disease (AD), but not much is known regarding its active compounds, molecular targets, and mechanism of action. The current study aimed to predict the potential molecular mech...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9155915/ https://www.ncbi.nlm.nih.gov/pubmed/35656471 http://dx.doi.org/10.1155/2022/9243348 |
_version_ | 1784718338647130112 |
---|---|
author | Tang, Lei Liu, Jing Xu, Xiaozhuo Zhao, Juan Han, Xu |
author_facet | Tang, Lei Liu, Jing Xu, Xiaozhuo Zhao, Juan Han, Xu |
author_sort | Tang, Lei |
collection | PubMed |
description | The traditional Chinese medicine (TCM) formula, Sheng Huang Chong Ji (SHCJ) is largely applied for treating Alzheimer's disease (AD), but not much is known regarding its active compounds, molecular targets, and mechanism of action. The current study aimed to predict the potential molecular mechanism of SHCJ against AD based on network pharmacology combined with in vitro validation. Using public databases, SHCJ's active compounds, their potential targets, and AD-related genes were screened, while Cytoscape Version 3.7.2 was used to build protein–protein interaction (PPI) and compound-disease-target (C-D-T) networks. Analysis of enriched Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways and Gene Ontology (GO) terms was then carried out in R 4.0.2, including associated packages. Subsequently, molecular docking analysis was performed with AutoDock Vina 1.1.2, with intro experiments involving SH-SY5Y cells used to further investigate the mechanism of SHCJ against AD. Finally, a total of 56 active compounds of SHCJ and 192 SHCJ-AD-related targets were identified. Quercetin was identified as the top potential candidate agent. HSP90AA1, AKT1, and MAPK1 represent potential therapeutic targets. The PI3K-Akt signaling pathway potentially represents a core one mediating the effects of SHCJ against AD. Additionally, molecular docking analysis indicated that quercetin could combine well with AKT1 and multiple apoptosis-related target genes. During cell experiments, a significant increase in cell viability along with a decrease in Aβ(25-35)-induced apoptosis was observed after treatment with SHCJ. Furthermore, SHCJ significantly increased the phosphorylation of PI3K and Akt while reversing Aβ(25-35)-induced apoptosis-related protein expression downregulation. |
format | Online Article Text |
id | pubmed-9155915 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Hindawi |
record_format | MEDLINE/PubMed |
spelling | pubmed-91559152022-06-01 Pharmacological Mechanism of Shen Huang Chong Ji for Treating Alzheimer's Disease Based on Network Pharmacology and Experimental Validation Tang, Lei Liu, Jing Xu, Xiaozhuo Zhao, Juan Han, Xu Evid Based Complement Alternat Med Research Article The traditional Chinese medicine (TCM) formula, Sheng Huang Chong Ji (SHCJ) is largely applied for treating Alzheimer's disease (AD), but not much is known regarding its active compounds, molecular targets, and mechanism of action. The current study aimed to predict the potential molecular mechanism of SHCJ against AD based on network pharmacology combined with in vitro validation. Using public databases, SHCJ's active compounds, their potential targets, and AD-related genes were screened, while Cytoscape Version 3.7.2 was used to build protein–protein interaction (PPI) and compound-disease-target (C-D-T) networks. Analysis of enriched Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways and Gene Ontology (GO) terms was then carried out in R 4.0.2, including associated packages. Subsequently, molecular docking analysis was performed with AutoDock Vina 1.1.2, with intro experiments involving SH-SY5Y cells used to further investigate the mechanism of SHCJ against AD. Finally, a total of 56 active compounds of SHCJ and 192 SHCJ-AD-related targets were identified. Quercetin was identified as the top potential candidate agent. HSP90AA1, AKT1, and MAPK1 represent potential therapeutic targets. The PI3K-Akt signaling pathway potentially represents a core one mediating the effects of SHCJ against AD. Additionally, molecular docking analysis indicated that quercetin could combine well with AKT1 and multiple apoptosis-related target genes. During cell experiments, a significant increase in cell viability along with a decrease in Aβ(25-35)-induced apoptosis was observed after treatment with SHCJ. Furthermore, SHCJ significantly increased the phosphorylation of PI3K and Akt while reversing Aβ(25-35)-induced apoptosis-related protein expression downregulation. Hindawi 2022-05-24 /pmc/articles/PMC9155915/ /pubmed/35656471 http://dx.doi.org/10.1155/2022/9243348 Text en Copyright © 2022 Lei Tang et al. https://creativecommons.org/licenses/by/4.0/This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Article Tang, Lei Liu, Jing Xu, Xiaozhuo Zhao, Juan Han, Xu Pharmacological Mechanism of Shen Huang Chong Ji for Treating Alzheimer's Disease Based on Network Pharmacology and Experimental Validation |
title | Pharmacological Mechanism of Shen Huang Chong Ji for Treating Alzheimer's Disease Based on Network Pharmacology and Experimental Validation |
title_full | Pharmacological Mechanism of Shen Huang Chong Ji for Treating Alzheimer's Disease Based on Network Pharmacology and Experimental Validation |
title_fullStr | Pharmacological Mechanism of Shen Huang Chong Ji for Treating Alzheimer's Disease Based on Network Pharmacology and Experimental Validation |
title_full_unstemmed | Pharmacological Mechanism of Shen Huang Chong Ji for Treating Alzheimer's Disease Based on Network Pharmacology and Experimental Validation |
title_short | Pharmacological Mechanism of Shen Huang Chong Ji for Treating Alzheimer's Disease Based on Network Pharmacology and Experimental Validation |
title_sort | pharmacological mechanism of shen huang chong ji for treating alzheimer's disease based on network pharmacology and experimental validation |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9155915/ https://www.ncbi.nlm.nih.gov/pubmed/35656471 http://dx.doi.org/10.1155/2022/9243348 |
work_keys_str_mv | AT tanglei pharmacologicalmechanismofshenhuangchongjifortreatingalzheimersdiseasebasedonnetworkpharmacologyandexperimentalvalidation AT liujing pharmacologicalmechanismofshenhuangchongjifortreatingalzheimersdiseasebasedonnetworkpharmacologyandexperimentalvalidation AT xuxiaozhuo pharmacologicalmechanismofshenhuangchongjifortreatingalzheimersdiseasebasedonnetworkpharmacologyandexperimentalvalidation AT zhaojuan pharmacologicalmechanismofshenhuangchongjifortreatingalzheimersdiseasebasedonnetworkpharmacologyandexperimentalvalidation AT hanxu pharmacologicalmechanismofshenhuangchongjifortreatingalzheimersdiseasebasedonnetworkpharmacologyandexperimentalvalidation |