Cargando…

Combination of HPLC-Q-TOF-MS/MS, Network Pharmacology, and Molecular Docking to Reveal the Mechanism of Apple Pollen in the Treatment of Type 2 Diabetes Mellitus

Studies have found that apple pollen can restrain the activity of amylase. Therefore, we speculate that it may be prescribed to treat patients with type 2 diabetes mellitus (T2DM), while its chemical and pharmacologic profiles remain to be further explained. In this study, the potential bioactive co...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Yiwen, Chen, Ping
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9155929/
https://www.ncbi.nlm.nih.gov/pubmed/35656465
http://dx.doi.org/10.1155/2022/3221196
_version_ 1784718342614941696
author Wang, Yiwen
Chen, Ping
author_facet Wang, Yiwen
Chen, Ping
author_sort Wang, Yiwen
collection PubMed
description Studies have found that apple pollen can restrain the activity of amylase. Therefore, we speculate that it may be prescribed to treat patients with type 2 diabetes mellitus (T2DM), while its chemical and pharmacologic profiles remain to be further explained. In this study, the potential bioactive compounds of apple pollen and the underlying mechanism of action were investigated by performing chemical and network pharmacology analysis. Therefore, HPLC-QTOF-MS/MS analysis based on chemical compound libraries was applied in identifying the chemical profiles of apple pollen and network pharmacology was adopted for predicting the potential targets of the active components of apple pollen. Initially, the chemical map of apple pollen was identified and characterized. Secondly, the potential targets of active compounds of apple pollen were predicted with the Swiss Target Prediction and PharmMapper databases, whereas targets of T2DM were collected from the GeneCards and OMIM database. Thereafter, the target of active compounds and T2DM targets established common targets using Venn. Afterwards, the common targets were imported into the STRING database in order to construct the protein-protein interaction (PPI) network and select the core targets of apple pollen treatment of T2DM. In addition, GO and KEGG signaling pathway enrichment analyses were conducted on the selected core targets using the DAVID database. As a result, totally 28 compounds were identified. Meanwhile, network pharmacological analysis showed that 3-hydroxy-3-methyl glutaric acid, 5-hydroxyindoleacetic acid, DL-3-phenyllactic acid, isorhamnetin-3-glucoside-4′-glucoside, isorhamnetin-3-O-glucoside, syringetin-3-O-galactoside, rhamnetin, m-coumaric acid, quercitrin, isorhamnetin-3-galactoside-6″-rhamnoside, and kaempferol-3-O-alpha-L-arabinoside might be the active compounds of apple pollen. Moreover, AKT1, PPARG, SRC, EGFR, CASP3, ESR1, and the other potential core targets might be involved in the treatment of T2DM by modulating the following pathways, containing insulin resistance, hepatitis C, pancreatic cancer, insulin signaling pathway, TNF signaling pathway, and PI3K-AKT signaling pathway. Quercitrin, kaempferol, and isorhamnetin-3-O-glucoside bound most stably to AKT1. Isorhamnetin-3-O-glucoside and quercitrin bound most stably to SRC. In addition, arachidonic acid bound most stably to PPARG.
format Online
Article
Text
id pubmed-9155929
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Hindawi
record_format MEDLINE/PubMed
spelling pubmed-91559292022-06-01 Combination of HPLC-Q-TOF-MS/MS, Network Pharmacology, and Molecular Docking to Reveal the Mechanism of Apple Pollen in the Treatment of Type 2 Diabetes Mellitus Wang, Yiwen Chen, Ping Evid Based Complement Alternat Med Research Article Studies have found that apple pollen can restrain the activity of amylase. Therefore, we speculate that it may be prescribed to treat patients with type 2 diabetes mellitus (T2DM), while its chemical and pharmacologic profiles remain to be further explained. In this study, the potential bioactive compounds of apple pollen and the underlying mechanism of action were investigated by performing chemical and network pharmacology analysis. Therefore, HPLC-QTOF-MS/MS analysis based on chemical compound libraries was applied in identifying the chemical profiles of apple pollen and network pharmacology was adopted for predicting the potential targets of the active components of apple pollen. Initially, the chemical map of apple pollen was identified and characterized. Secondly, the potential targets of active compounds of apple pollen were predicted with the Swiss Target Prediction and PharmMapper databases, whereas targets of T2DM were collected from the GeneCards and OMIM database. Thereafter, the target of active compounds and T2DM targets established common targets using Venn. Afterwards, the common targets were imported into the STRING database in order to construct the protein-protein interaction (PPI) network and select the core targets of apple pollen treatment of T2DM. In addition, GO and KEGG signaling pathway enrichment analyses were conducted on the selected core targets using the DAVID database. As a result, totally 28 compounds were identified. Meanwhile, network pharmacological analysis showed that 3-hydroxy-3-methyl glutaric acid, 5-hydroxyindoleacetic acid, DL-3-phenyllactic acid, isorhamnetin-3-glucoside-4′-glucoside, isorhamnetin-3-O-glucoside, syringetin-3-O-galactoside, rhamnetin, m-coumaric acid, quercitrin, isorhamnetin-3-galactoside-6″-rhamnoside, and kaempferol-3-O-alpha-L-arabinoside might be the active compounds of apple pollen. Moreover, AKT1, PPARG, SRC, EGFR, CASP3, ESR1, and the other potential core targets might be involved in the treatment of T2DM by modulating the following pathways, containing insulin resistance, hepatitis C, pancreatic cancer, insulin signaling pathway, TNF signaling pathway, and PI3K-AKT signaling pathway. Quercitrin, kaempferol, and isorhamnetin-3-O-glucoside bound most stably to AKT1. Isorhamnetin-3-O-glucoside and quercitrin bound most stably to SRC. In addition, arachidonic acid bound most stably to PPARG. Hindawi 2022-05-24 /pmc/articles/PMC9155929/ /pubmed/35656465 http://dx.doi.org/10.1155/2022/3221196 Text en Copyright © 2022 Yiwen Wang and Ping Chen. https://creativecommons.org/licenses/by/4.0/This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research Article
Wang, Yiwen
Chen, Ping
Combination of HPLC-Q-TOF-MS/MS, Network Pharmacology, and Molecular Docking to Reveal the Mechanism of Apple Pollen in the Treatment of Type 2 Diabetes Mellitus
title Combination of HPLC-Q-TOF-MS/MS, Network Pharmacology, and Molecular Docking to Reveal the Mechanism of Apple Pollen in the Treatment of Type 2 Diabetes Mellitus
title_full Combination of HPLC-Q-TOF-MS/MS, Network Pharmacology, and Molecular Docking to Reveal the Mechanism of Apple Pollen in the Treatment of Type 2 Diabetes Mellitus
title_fullStr Combination of HPLC-Q-TOF-MS/MS, Network Pharmacology, and Molecular Docking to Reveal the Mechanism of Apple Pollen in the Treatment of Type 2 Diabetes Mellitus
title_full_unstemmed Combination of HPLC-Q-TOF-MS/MS, Network Pharmacology, and Molecular Docking to Reveal the Mechanism of Apple Pollen in the Treatment of Type 2 Diabetes Mellitus
title_short Combination of HPLC-Q-TOF-MS/MS, Network Pharmacology, and Molecular Docking to Reveal the Mechanism of Apple Pollen in the Treatment of Type 2 Diabetes Mellitus
title_sort combination of hplc-q-tof-ms/ms, network pharmacology, and molecular docking to reveal the mechanism of apple pollen in the treatment of type 2 diabetes mellitus
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9155929/
https://www.ncbi.nlm.nih.gov/pubmed/35656465
http://dx.doi.org/10.1155/2022/3221196
work_keys_str_mv AT wangyiwen combinationofhplcqtofmsmsnetworkpharmacologyandmoleculardockingtorevealthemechanismofapplepolleninthetreatmentoftype2diabetesmellitus
AT chenping combinationofhplcqtofmsmsnetworkpharmacologyandmoleculardockingtorevealthemechanismofapplepolleninthetreatmentoftype2diabetesmellitus