Cargando…

CT-ML: Diagnosis of Breast Cancer Based on Ultrasound Images and Time-Dependent Feature Extraction Methods Using Contourlet Transformation and Machine Learning

Breast diseases are a group of diseases that appear in different forms. An entire group of these diseases is breast cancer. This disease is one of the most important and common diseases in women. A machine learning system has been trained to identify specific patterns using an algorithm in a machine...

Descripción completa

Detalles Bibliográficos
Autores principales: Hajipour Khire Masjidi, Behnam, Bahmani, Soufia, Sharifi, Fatemeh, Peivandi, Mohammad, Khosravani, Mohammad, Hussein Mohammed, Adil
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9155970/
https://www.ncbi.nlm.nih.gov/pubmed/35655521
http://dx.doi.org/10.1155/2022/1493847
Descripción
Sumario:Breast diseases are a group of diseases that appear in different forms. An entire group of these diseases is breast cancer. This disease is one of the most important and common diseases in women. A machine learning system has been trained to identify specific patterns using an algorithm in a machine learning system to diagnose breast cancer. Therefore, designing a feature extraction method is essential to decrease the computation time. In this article, a two-dimensional contourlet is utilized as the input image based on the Breast Cancer Ultrasound Dataset. The sub-banded contourlet coefficients are modeled using the time-dependent model. The features of the time-dependent model are considered the leading property vector. The extracted features are applied separately to determine breast cancer classes based on classification methods. The classification is performed for the diagnosis of tumor types. We used the time-dependent approach to feature contourlet sub-bands from three groups of benign, malignant, and health control test samples. The final feature of 1200 ultrasound images used in three categories is trained based on k-nearest neighbor, support vector machine, decision tree, random forest, and linear discrimination analysis approaches, and the results are recorded. The decision tree results show that the method's sensitivity is 87.8%, 92.0%, and 87.0% for normal, benign, and malignant, respectively. The presented feature extraction method is compatible with the decision tree approach for this problem. Based on the results, the decision tree architecture with the highest accuracy is the more accurate and compatible method for diagnosing breast cancer using ultrasound images.