Cargando…
A practical solution to estimate the sample size required for clinical prediction models generated from observational research on data
BACKGROUND: Estimating the required sample size is crucial when developing and validating clinical prediction models. However, there is no consensus about how to determine the sample size in such a setting. Here, the goal was to compare available methods to define a practical solution to sample size...
Autores principales: | Baeza-Delgado, Carlos, Cerdá Alberich, Leonor, Carot-Sierra, José Miguel, Veiga-Canuto, Diana, Martínez de las Heras, Blanca, Raza, Ben, Martí-Bonmatí, Luis |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Vienna
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9156610/ https://www.ncbi.nlm.nih.gov/pubmed/35641659 http://dx.doi.org/10.1186/s41747-022-00276-y |
Ejemplares similares
-
A Confidence Habitats Methodology in MR Quantitative Diffusion for the Classification of Neuroblastic Tumors
por: Cerdá Alberich, Leonor, et al.
Publicado: (2020) -
Comparative Multicentric Evaluation of Inter-Observer Variability in Manual and Automatic Segmentation of Neuroblastic Tumors in Magnetic Resonance Images
por: Veiga-Canuto, Diana, et al.
Publicado: (2022) -
Independent Validation of a Deep Learning nnU-Net Tool for Neuroblastoma Detection and Segmentation in MR Images
por: Veiga-Canuto, Diana, et al.
Publicado: (2023) -
MAIC–10 brief quality checklist for publications using artificial intelligence and medical images
por: Cerdá-Alberich, Leonor, et al.
Publicado: (2023) -
Prevalencia y factores de desgaste profesional en radiólogos durante la pandemia COVID-19
por: Oprisan, A., et al.
Publicado: (2022)