Cargando…

Robust-Deep: A Method for Increasing Brain Imaging Datasets to Improve Deep Learning Models’ Performance and Robustness

A small dataset commonly affects generalization, robustness, and overall performance of deep neural networks (DNNs) in medical imaging research. Since gathering large clinical databases is always difficult, we proposed an analytical method for producing a large realistic/diverse dataset. Clinical br...

Descripción completa

Detalles Bibliográficos
Autores principales: Sanaat, Amirhossein, Shiri, Isaac, Ferdowsi, Sohrab, Arabi, Hossein, Zaidi, Habib
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer International Publishing 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9156620/
https://www.ncbi.nlm.nih.gov/pubmed/35137305
http://dx.doi.org/10.1007/s10278-021-00536-0
_version_ 1784718477645316096
author Sanaat, Amirhossein
Shiri, Isaac
Ferdowsi, Sohrab
Arabi, Hossein
Zaidi, Habib
author_facet Sanaat, Amirhossein
Shiri, Isaac
Ferdowsi, Sohrab
Arabi, Hossein
Zaidi, Habib
author_sort Sanaat, Amirhossein
collection PubMed
description A small dataset commonly affects generalization, robustness, and overall performance of deep neural networks (DNNs) in medical imaging research. Since gathering large clinical databases is always difficult, we proposed an analytical method for producing a large realistic/diverse dataset. Clinical brain PET/CT/MR images including full-dose (FD), low-dose (LD) corresponding to only 5 % of events acquired in the FD scan, non-attenuated correction (NAC) and CT-based measured attenuation correction (MAC) PET images, CT images and T1 and T2 MR sequences of 35 patients were included. All images were registered to the Montreal Neurological Institute (MNI) template. Laplacian blending was used to make a natural presentation using information in the frequency domain of images from two separate patients, as well as the blending mask. This classical technique from the computer vision and image processing communities is still widely used and unlike modern DNNs, does not require the availability of training data. A modified ResNet DNN was implemented to evaluate four image-to-image translation tasks, including LD to FD, LD+MR to FD, NAC to MAC, and MRI to CT, with and without using the synthesized images. Quantitative analysis using established metrics, including the peak signal-to-noise ratio (PSNR), structural similarity index metric (SSIM), and joint histogram analysis was performed for quantitative evaluation. The quantitative comparison between the registered small dataset containing 35 patients and the large dataset containing 350 synthesized plus 35 real dataset demonstrated improvement of the RMSE and SSIM by 29% and 8% for LD to FD, 40% and 7% for LD+MRI to FD, 16% and 8% for NAC to MAC, and 24% and 11% for MRI to CT mapping task, respectively. The qualitative/quantitative analysis demonstrated that the proposed model improved the performance of all four DNN models through producing images of higher quality and lower quantitative bias and variance compared to reference images.
format Online
Article
Text
id pubmed-9156620
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Springer International Publishing
record_format MEDLINE/PubMed
spelling pubmed-91566202022-06-02 Robust-Deep: A Method for Increasing Brain Imaging Datasets to Improve Deep Learning Models’ Performance and Robustness Sanaat, Amirhossein Shiri, Isaac Ferdowsi, Sohrab Arabi, Hossein Zaidi, Habib J Digit Imaging Article A small dataset commonly affects generalization, robustness, and overall performance of deep neural networks (DNNs) in medical imaging research. Since gathering large clinical databases is always difficult, we proposed an analytical method for producing a large realistic/diverse dataset. Clinical brain PET/CT/MR images including full-dose (FD), low-dose (LD) corresponding to only 5 % of events acquired in the FD scan, non-attenuated correction (NAC) and CT-based measured attenuation correction (MAC) PET images, CT images and T1 and T2 MR sequences of 35 patients were included. All images were registered to the Montreal Neurological Institute (MNI) template. Laplacian blending was used to make a natural presentation using information in the frequency domain of images from two separate patients, as well as the blending mask. This classical technique from the computer vision and image processing communities is still widely used and unlike modern DNNs, does not require the availability of training data. A modified ResNet DNN was implemented to evaluate four image-to-image translation tasks, including LD to FD, LD+MR to FD, NAC to MAC, and MRI to CT, with and without using the synthesized images. Quantitative analysis using established metrics, including the peak signal-to-noise ratio (PSNR), structural similarity index metric (SSIM), and joint histogram analysis was performed for quantitative evaluation. The quantitative comparison between the registered small dataset containing 35 patients and the large dataset containing 350 synthesized plus 35 real dataset demonstrated improvement of the RMSE and SSIM by 29% and 8% for LD to FD, 40% and 7% for LD+MRI to FD, 16% and 8% for NAC to MAC, and 24% and 11% for MRI to CT mapping task, respectively. The qualitative/quantitative analysis demonstrated that the proposed model improved the performance of all four DNN models through producing images of higher quality and lower quantitative bias and variance compared to reference images. Springer International Publishing 2022-02-08 2022-06 /pmc/articles/PMC9156620/ /pubmed/35137305 http://dx.doi.org/10.1007/s10278-021-00536-0 Text en © The Author(s) under exclusive licence to Society for Imaging Informatics in Medicine 2022
spellingShingle Article
Sanaat, Amirhossein
Shiri, Isaac
Ferdowsi, Sohrab
Arabi, Hossein
Zaidi, Habib
Robust-Deep: A Method for Increasing Brain Imaging Datasets to Improve Deep Learning Models’ Performance and Robustness
title Robust-Deep: A Method for Increasing Brain Imaging Datasets to Improve Deep Learning Models’ Performance and Robustness
title_full Robust-Deep: A Method for Increasing Brain Imaging Datasets to Improve Deep Learning Models’ Performance and Robustness
title_fullStr Robust-Deep: A Method for Increasing Brain Imaging Datasets to Improve Deep Learning Models’ Performance and Robustness
title_full_unstemmed Robust-Deep: A Method for Increasing Brain Imaging Datasets to Improve Deep Learning Models’ Performance and Robustness
title_short Robust-Deep: A Method for Increasing Brain Imaging Datasets to Improve Deep Learning Models’ Performance and Robustness
title_sort robust-deep: a method for increasing brain imaging datasets to improve deep learning models’ performance and robustness
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9156620/
https://www.ncbi.nlm.nih.gov/pubmed/35137305
http://dx.doi.org/10.1007/s10278-021-00536-0
work_keys_str_mv AT sanaatamirhossein robustdeepamethodforincreasingbrainimagingdatasetstoimprovedeeplearningmodelsperformanceandrobustness
AT shiriisaac robustdeepamethodforincreasingbrainimagingdatasetstoimprovedeeplearningmodelsperformanceandrobustness
AT ferdowsisohrab robustdeepamethodforincreasingbrainimagingdatasetstoimprovedeeplearningmodelsperformanceandrobustness
AT arabihossein robustdeepamethodforincreasingbrainimagingdatasetstoimprovedeeplearningmodelsperformanceandrobustness
AT zaidihabib robustdeepamethodforincreasingbrainimagingdatasetstoimprovedeeplearningmodelsperformanceandrobustness