Cargando…
Robust-Deep: A Method for Increasing Brain Imaging Datasets to Improve Deep Learning Models’ Performance and Robustness
A small dataset commonly affects generalization, robustness, and overall performance of deep neural networks (DNNs) in medical imaging research. Since gathering large clinical databases is always difficult, we proposed an analytical method for producing a large realistic/diverse dataset. Clinical br...
Autores principales: | Sanaat, Amirhossein, Shiri, Isaac, Ferdowsi, Sohrab, Arabi, Hossein, Zaidi, Habib |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9156620/ https://www.ncbi.nlm.nih.gov/pubmed/35137305 http://dx.doi.org/10.1007/s10278-021-00536-0 |
Ejemplares similares
-
Deep‐TOF‐PET: Deep learning‐guided generation of time‐of‐flight from non‐TOF brain PET images in the image and projection domains
por: Sanaat, Amirhossein, et al.
Publicado: (2022) -
Deep learning-assisted ultra-fast/low-dose whole-body PET/CT imaging
por: Sanaat, Amirhossein, et al.
Publicado: (2021) -
An active learning approach to train a deep learning algorithm for tumor segmentation from brain MR images
por: Boehringer, Andrew S., et al.
Publicado: (2023) -
Decentralized collaborative multi-institutional PET attenuation and scatter correction using federated deep learning
por: Shiri, Isaac, et al.
Publicado: (2022) -
Deep learning-based fully automated Z-axis coverage range definition from scout scans to eliminate overscanning in chest CT imaging
por: Salimi, Yazdan, et al.
Publicado: (2021)