Cargando…
Clinical artificial intelligence quality improvement: towards continual monitoring and updating of AI algorithms in healthcare
Machine learning (ML) and artificial intelligence (AI) algorithms have the potential to derive insights from clinical data and improve patient outcomes. However, these highly complex systems are sensitive to changes in the environment and liable to performance decay. Even after their successful inte...
Autores principales: | Feng, Jean, Phillips, Rachael V., Malenica, Ivana, Bishara, Andrew, Hubbard, Alan E., Celi, Leo A., Pirracchio, Romain |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9156743/ https://www.ncbi.nlm.nih.gov/pubmed/35641814 http://dx.doi.org/10.1038/s41746-022-00611-y |
Ejemplares similares
-
The “inconvenient truth” about AI in healthcare
por: Panch, Trishan, et al.
Publicado: (2019) -
The clinical artificial intelligence department: a prerequisite for success
por: Cosgriff, Christopher V., et al.
Publicado: (2020) -
Clinical use of artificial intelligence requires AI-capable organizations
por: Novak, Laurie Lovett, et al.
Publicado: (2023) -
Catalyzing next-generation Artificial Intelligence through NeuroAI
por: Zador, Anthony, et al.
Publicado: (2023) -
Recommendations for the use of pediatric data in artificial intelligence and machine learning ACCEPT-AI
por: Muralidharan, V., et al.
Publicado: (2023)