Cargando…

Dynamic survival analysis for non-Markovian epidemic models

We present a new method for analysing stochastic epidemic models under minimal assumptions. The method, dubbed dynamic survival analysis (DSA), is based on a simple yet powerful observation, namely that population-level mean-field trajectories described by a system of partial differential equations...

Descripción completa

Detalles Bibliográficos
Autores principales: Di Lauro, Francesco, KhudaBukhsh, Wasiur R., Kiss, István Z., Kenah, Eben, Jensen, Max, Rempała, Grzegorz A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Royal Society 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9156913/
https://www.ncbi.nlm.nih.gov/pubmed/35642427
http://dx.doi.org/10.1098/rsif.2022.0124
_version_ 1784718536224014336
author Di Lauro, Francesco
KhudaBukhsh, Wasiur R.
Kiss, István Z.
Kenah, Eben
Jensen, Max
Rempała, Grzegorz A.
author_facet Di Lauro, Francesco
KhudaBukhsh, Wasiur R.
Kiss, István Z.
Kenah, Eben
Jensen, Max
Rempała, Grzegorz A.
author_sort Di Lauro, Francesco
collection PubMed
description We present a new method for analysing stochastic epidemic models under minimal assumptions. The method, dubbed dynamic survival analysis (DSA), is based on a simple yet powerful observation, namely that population-level mean-field trajectories described by a system of partial differential equations may also approximate individual-level times of infection and recovery. This idea gives rise to a certain non-Markovian agent-based model and provides an agent-level likelihood function for a random sample of infection and/or recovery times. Extensive numerical analyses on both synthetic and real epidemic data from foot-and-mouth disease in the UK (2001) and COVID-19 in India (2020) show good accuracy and confirm the method’s versatility in likelihood-based parameter estimation. The accompanying software package gives prospective users a practical tool for modelling, analysing and interpreting epidemic data with the help of the DSA approach.
format Online
Article
Text
id pubmed-9156913
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher The Royal Society
record_format MEDLINE/PubMed
spelling pubmed-91569132022-06-12 Dynamic survival analysis for non-Markovian epidemic models Di Lauro, Francesco KhudaBukhsh, Wasiur R. Kiss, István Z. Kenah, Eben Jensen, Max Rempała, Grzegorz A. J R Soc Interface Life Sciences–Mathematics interface We present a new method for analysing stochastic epidemic models under minimal assumptions. The method, dubbed dynamic survival analysis (DSA), is based on a simple yet powerful observation, namely that population-level mean-field trajectories described by a system of partial differential equations may also approximate individual-level times of infection and recovery. This idea gives rise to a certain non-Markovian agent-based model and provides an agent-level likelihood function for a random sample of infection and/or recovery times. Extensive numerical analyses on both synthetic and real epidemic data from foot-and-mouth disease in the UK (2001) and COVID-19 in India (2020) show good accuracy and confirm the method’s versatility in likelihood-based parameter estimation. The accompanying software package gives prospective users a practical tool for modelling, analysing and interpreting epidemic data with the help of the DSA approach. The Royal Society 2022-06-01 /pmc/articles/PMC9156913/ /pubmed/35642427 http://dx.doi.org/10.1098/rsif.2022.0124 Text en © 2022 The Authors. https://creativecommons.org/licenses/by/4.0/Published by the Royal Society under the terms of the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, provided the original author and source are credited.
spellingShingle Life Sciences–Mathematics interface
Di Lauro, Francesco
KhudaBukhsh, Wasiur R.
Kiss, István Z.
Kenah, Eben
Jensen, Max
Rempała, Grzegorz A.
Dynamic survival analysis for non-Markovian epidemic models
title Dynamic survival analysis for non-Markovian epidemic models
title_full Dynamic survival analysis for non-Markovian epidemic models
title_fullStr Dynamic survival analysis for non-Markovian epidemic models
title_full_unstemmed Dynamic survival analysis for non-Markovian epidemic models
title_short Dynamic survival analysis for non-Markovian epidemic models
title_sort dynamic survival analysis for non-markovian epidemic models
topic Life Sciences–Mathematics interface
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9156913/
https://www.ncbi.nlm.nih.gov/pubmed/35642427
http://dx.doi.org/10.1098/rsif.2022.0124
work_keys_str_mv AT dilaurofrancesco dynamicsurvivalanalysisfornonmarkovianepidemicmodels
AT khudabukhshwasiurr dynamicsurvivalanalysisfornonmarkovianepidemicmodels
AT kissistvanz dynamicsurvivalanalysisfornonmarkovianepidemicmodels
AT kenaheben dynamicsurvivalanalysisfornonmarkovianepidemicmodels
AT jensenmax dynamicsurvivalanalysisfornonmarkovianepidemicmodels
AT rempałagrzegorza dynamicsurvivalanalysisfornonmarkovianepidemicmodels