Cargando…
An investigation of how normalisation and local modelling techniques confound machine learning performance in a mental health study
Machine learning (ML) is increasingly deployed on biomedical studies for biomarker development (feature selection) and diagnostic/prognostic technologies (classification). While different ML techniques produce different feature sets and classification performances, less understood is how upstream da...
Autores principales: | Zhang, Xinxin, Lee, Jimmy, Goh, Wilson Wen Bin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9156999/ https://www.ncbi.nlm.nih.gov/pubmed/35663731 http://dx.doi.org/10.1016/j.heliyon.2022.e09502 |
Ejemplares similares
-
Confound-leakage: confound removal in machine learning leads to leakage
por: Hamdan, Sami, et al.
Publicado: (2023) -
Normalisation
por: Coignet, G
Publicado: (1988) -
Hierarchical confounder discovery in the experiment-machine learning cycle
por: Rogozhnikov, Alex, et al.
Publicado: (2022) -
Statistical quantification of confounding bias in machine learning models
por: Spisak, Tamas
Publicado: (2022) -
Biological batch normalisation: How intrinsic plasticity improves learning in deep neural networks
por: Shaw, Nolan Peter, et al.
Publicado: (2020)