Cargando…
Low Infrared Emissivity and Strong Stealth of Ti-Based MXenes
Advanced scenario-adaptable infrared (IR) stealth materials are crucial for creating localized closed thermal environments. Low emissivity over the broadest possible band is expected, as is superior mechanical deformability. Herein, we report a series of Ti-based MXenes with naturally low emissivity...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
AAAS
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9157363/ https://www.ncbi.nlm.nih.gov/pubmed/35692598 http://dx.doi.org/10.34133/2022/9892628 |
Sumario: | Advanced scenario-adaptable infrared (IR) stealth materials are crucial for creating localized closed thermal environments. Low emissivity over the broadest possible band is expected, as is superior mechanical deformability. Herein, we report a series of Ti-based MXenes with naturally low emissivity as ideal IR shielding materials. Over a wavelength ranging from 2.5 to 25 μm, Ti(3)C(2)T(X) film delivers an average emissivity of 0.057 with the lowest point of 0.042. Such a low emissivity coupled with outstanding structural shaping capability is beyond the current grasp. The reflection-dominated mechanism is dissected. Also, some intriguing scenarios of IR stealth for wearable electronic devices and skin thermal control are demonstrated. This finding lights an encouraging path toward next-generation IR shielding by the expanding MXene family. |
---|