Cargando…
Predicting outcomes in patients with aortic stenosis using machine learning: the Aortic Stenosis Risk (ASteRisk) score
OBJECTIVE: To use echocardiographic and clinical features to develop an explainable clinical risk prediction model in patients with aortic stenosis (AS), including those with low-gradient AS (LGAS), using machine learning (ML). METHODS: In 1130 patients with moderate or severe AS, we used bootstrap...
Autores principales: | Namasivayam, Mayooran, Myers, Paul D, Guttag, John V, Capoulade, Romain, Pibarot, Philippe, Picard, Michael H, Hung, Judy, Stultz, Collin M |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BMJ Publishing Group
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9157386/ https://www.ncbi.nlm.nih.gov/pubmed/35641101 http://dx.doi.org/10.1136/openhrt-2022-001990 |
Ejemplares similares
-
Valve area and the risk of overestimating aortic stenosis
por: González-Mansilla, Ana, et al.
Publicado: (2019) -
Progression of aortic stenosis after an acute myocardial infarction
por: Paquin, Amélie, et al.
Publicado: (2022) -
Contrast-enhanced computed tomography assessment of aortic stenosis
por: Cartlidge, Timothy RG, et al.
Publicado: (2021) -
Temporal trends of aortic stenosis and comorbid chronic kidney disease in the province of Quebec, Canada
por: Khelifi, Nada, et al.
Publicado: (2022) -
Role of Multimodal Cardiac Imaging in Low-Flow, Low-Gradient Aortic Stenosis
por: Sauza-Sosa, Julio C., et al.
Publicado: (2023)