Cargando…

Transition in the growth mode of plasmonic bubbles in binary liquids

Multi-component fluids with phase transitions show a plethora of fascinating phenomena with rich physics. Here we report on a transition in the growth mode of plasmonic bubbles in binary liquids. By employing high-speed imaging we reveal that the transition is from slow evaporative to fast convectiv...

Descripción completa

Detalles Bibliográficos
Autores principales: Detert, Marvin, Chen, Yibo, Zandvliet, Harold J. W., Lohse, Detlef
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Royal Society of Chemistry 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9157508/
https://www.ncbi.nlm.nih.gov/pubmed/35583141
http://dx.doi.org/10.1039/d2sm00315e
Descripción
Sumario:Multi-component fluids with phase transitions show a plethora of fascinating phenomena with rich physics. Here we report on a transition in the growth mode of plasmonic bubbles in binary liquids. By employing high-speed imaging we reveal that the transition is from slow evaporative to fast convective growth and accompanied by a sudden increase in radius. The transition occurs as the three-phase contact line reaches the spinodal temperature of the more volatile component leading to massive, selective evaporation. This creates a strong solutal Marangoni flow along the bubble which marks the beginning of convective growth. We support this interpretation by simulations. After the transition the bubble starts to oscillate in position and in shape. Though different in magnitude the frequencies of both oscillations follow the same power law [Image: see text] , which is characteristic of bubble shape oscillations, with the surface tension σ as the restoring force and the bubble's added mass as inertia. The transitions and the oscillations both induce a strong motion in the surrounding liquid, opening doors for various applications where local mixing is beneficial.