Cargando…

CircSTX6 promotes pancreatic ductal adenocarcinoma progression by sponging miR-449b-5p and interacting with CUL2

BACKGROUND: circular RNAs (circRNAs) have been reported to play crucial roles in the biology of different cancers. However, little is known about the function of circSTX6 (hsa_circ_0007905) in pancreatic ductal adenocarcinoma (PDAC). METHODS: circSTX6, a circRNA containing exons 4, 5, 6 and 7 of the...

Descripción completa

Detalles Bibliográficos
Autores principales: Meng, Lingdong, Zhang, Yihan, Wu, Pengfei, Li, Danrui, Lu, Yichao, Shen, Peng, Yang, Taoyue, Shi, Guodong, Chen, Qun, Yuan, Hao, Ge, Wanli, Miao, Yi, Tu, Min, Jiang, Kuirong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9158112/
https://www.ncbi.nlm.nih.gov/pubmed/35650603
http://dx.doi.org/10.1186/s12943-022-01599-5
Descripción
Sumario:BACKGROUND: circular RNAs (circRNAs) have been reported to play crucial roles in the biology of different cancers. However, little is known about the function of circSTX6 (hsa_circ_0007905) in pancreatic ductal adenocarcinoma (PDAC). METHODS: circSTX6, a circRNA containing exons 4, 5, 6 and 7 of the STX6 gene, was identified by RNA sequencing and detected by quantitative reverse transcription PCR (qRT–PCR). The biological function of circSTX6 was assessed in vitro and in vivo. The relationship between circSTX6 and miR-449b-5p was confirmed by biotin-coupled circRNA capture, fluorescence in situ hybridization (FISH) and luciferase reporter assays. The interaction of circSTX6 with Cullin 2 (CUL2) was verified by RNA–protein RNA pull-down, RNA immunoprecipitation (RIP) and western blotting assays. RESULTS: circSTX6 was frequently upregulated in PDAC tissues, and circSTX6 overexpression promoted tumor proliferation and metastasis both in vitro and in vivo. Furthermore, circSTX6 expression was associated with tumor differentiation and N stage. Mechanistically, circSTX6 regulated the expression of non-muscle myosin heavy chain 9 (MYH9) by sponging miR-449b-5p. Moreover, circSTX6 was confirmed to participate in the ubiquitin-dependent degradation of hypoxia-inducible factor 1-alpha (HIF1A) by interacting with CUL2 and subsequently accelerating the transcription of MYH9. CONCLUSIONS: Our findings indicate that circSTX6 facilitates proliferation and metastasis of PDAC cells by regulating the expression of MYH9 through the circSTX6/miR-449b-5p axis and circSTX6/CUL2/HIF1A signaling pathway. Therefore, circSTX6 could serve as a potential therapeutic target for the treatment of PDAC. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s12943-022-01599-5.