Cargando…

Tracking Proactive Interference in Visual Memory

The current contents of visual working memory can be disrupted by previously formed memories. This phenomenon is known as proactive interference, and it can be used to index the availability of old memories. However, there is uncertainty about the robustness and lifetime of proactive interference, w...

Descripción completa

Detalles Bibliográficos
Autores principales: Mercer, Tom, Jarvis, Ruby-Jane, Lawton, Rebekah, Walters, Frankie
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9158505/
https://www.ncbi.nlm.nih.gov/pubmed/35664155
http://dx.doi.org/10.3389/fpsyg.2022.896866
Descripción
Sumario:The current contents of visual working memory can be disrupted by previously formed memories. This phenomenon is known as proactive interference, and it can be used to index the availability of old memories. However, there is uncertainty about the robustness and lifetime of proactive interference, which raises important questions about the role of temporal factors in forgetting. The present study assessed different factors that were expected to influence the persistence of proactive interference over an inter-trial interval in the visual recent probes task. In three experiments, participants encoded arrays of targets and then determined whether a single probe matched one of those targets. On some trials, the probe matched an item from the previous trial (a “recent negative”), whereas on other trials the probe matched a more distant item (a “non-recent negative”). Prior studies have found that recent negative probes can increase errors and slow response times in comparison to non-recent negative probes, and this offered a behavioral measure of proactive interference. In Experiment 1, factors of array size (the number of targets to be encoded) and inter-trial interval (300 ms vs. 8 s) were manipulated in the recent probes task. There was a reduction in proactive interference when a longer delay separated trials on one measure, but only when participants encoded two targets. When working memory capacity was strained by increasing the array size to four targets, proactive interference became stronger after the long delay. In Experiment 2, the inter-trial interval length was again manipulated, along with stimulus novelty (the number of stimuli used in the experiment). Proactive interference was modestly stronger when a smaller number of stimuli were used throughout the experiment, but proactive interference was minimally affected by the inter-trial interval. These findings are problematic for temporal models of forgetting, but Experiment 3 showed that proactive interference also resisted disruption produced by a secondary task presented within the inter-trial interval. Proactive interference was constantly present and generally resilient to the different manipulations. The combined data suggest a relatively durable, passive representation that can disrupt current working memory under a variety of different circumstances.