Cargando…
Plant Genotype to Phenotype Prediction Using Machine Learning
Genomic prediction tools support crop breeding based on statistical methods, such as the genomic best linear unbiased prediction (GBLUP). However, these tools are not designed to capture non-linear relationships within multi-dimensional datasets, or deal with high dimension datasets such as imagery...
Autores principales: | Danilevicz, Monica F., Gill, Mitchell, Anderson, Robyn, Batley, Jacqueline, Bennamoun, Mohammed, Bayer, Philipp E., Edwards, David |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9159391/ https://www.ncbi.nlm.nih.gov/pubmed/35664329 http://dx.doi.org/10.3389/fgene.2022.822173 |
Ejemplares similares
-
Machine learning models outperform deep learning models, provide interpretation and facilitate feature selection for soybean trait prediction
por: Gill, Mitchell, et al.
Publicado: (2022) -
DNABERT-based explainable lncRNA identification in plant genome assemblies
por: Danilevicz, Monica F., et al.
Publicado: (2023) -
Resources for image-based high-throughput phenotyping in crops and data sharing challenges
por: Danilevicz, Monica F., et al.
Publicado: (2021) -
Evaluating Plant Gene Models Using Machine Learning
por: Upadhyaya, Shriprabha R., et al.
Publicado: (2022) -
Genotyping of Haliotis discus hannai and machine learning models to predict the heat resistant phenotype based on genotype
por: Noh, Eun Soo, et al.
Publicado: (2023)