Cargando…

3D-printed Bioresorbable Stent Coated with Dipyridamole-Loaded Nanofiber for Restenosis Prevention and Endothelialization

Intimal hyperplasia and restenosis caused by excessive proliferation of smooth muscle cells (SMC) are the main factors for the failure of stent implantation. Drug-eluting stents carried with antiproliferative drugs have emerged as a successful approach to alleviate early neointimal development. Howe...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Chengjin, Yang, Yang, Ji, Jingyuan, Fang, Yongcong, Ouyang, Liliang, Zhang, Lei, Sun, Wei
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Whioce Publishing Pte. Ltd. 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9159485/
https://www.ncbi.nlm.nih.gov/pubmed/35669322
http://dx.doi.org/10.18063/ijb.v8i2.543
Descripción
Sumario:Intimal hyperplasia and restenosis caused by excessive proliferation of smooth muscle cells (SMC) are the main factors for the failure of stent implantation. Drug-eluting stents carried with antiproliferative drugs have emerged as a successful approach to alleviate early neointimal development. However, these agents have been reported to have an undesirable effect on re-endothelialization. In this study, we proposed an integrated bioresorbable stent coated with dipyridamole (DP)-loaded poly(D,L-lactide) (PDLLA) nanofibers. Three-dimensional (3D) bioresorbable stents were fabricated by printing on a rotation mandrel using polycaprolactone (PCL), and the stents were further coated with PDLLA/DP nanofibers. The in vitro degradation and drug release evaluation illustrated the potential for long-term release of DP. Stents coated with PDLLA/DP nanofibers showed excellent hemocompatibility. The cell viability, proliferation, and morphology analysis results revealed that stents coated with PDLLA/DP nanofibers could prevent the proliferation of SMC and have no adverse effects on endothelial cells. The in vivo implantation of stents coated with PDLLA/DP nanofibers showed initial patency and continuous endothelialization and alleviated neointimal formation. The attractive in vitro and in vivo performance indicated its potential for restenosis prevention and endothelialization.